


time - 8 A.M. Have you ever arrived at exactly 8 o'clock? It is very unlikely. Even if the
clock's second hand hit 8 A.M. as you walked through the portals of your office, you would have
to rely on your faulty vision and an office clock - both lacking in exactness. Also, what level of
accuracy are we talking about? Exactness means 100% accuracy, and no measurement that we
mortals take qualifies. Consequently, the chances of arriving at a point in a continuous
probability space is 0. But with the calculus we can shift measurement to an interval, e.g., 7:55
AM. 1o 8:05 AM. Since you are probably a conscientious worker, the odds are 100% or close
that you arrive for work within this interval. Whenever we are measuring the probability that X
lies between two values, we are in the domain of continuous sets and their associated probability

distributions.
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22 Probability Distribution

We want fo assign a probability to event X. If X is a point in a continuous sample space,
P(X) = 0. Therefore, we need to use calculus to develop probability through summing P(X) on
an interval. In the discrete case, we can simply sum the probabilities of the points that we wish
to consider.

The distribution function accumulates the probability associated with random variable X
and is defined:

F(X) = P(X <x), ~o <x <w
F(X) s the probability that X will take on values less than or equal to x.

Example (Discrete): Suppose we spin a wheel that has numbers from 1-100. The
probability that X lands on a number less than or equal to 75 is 75/100 = 3/4. In the language
of probability, F(75) = P(X <75) = 3/4,

Example (Continuous): Consider a bank that opens at 8 AM. and closes at 4 P.M. An
efficiency expert will pop in at a random time to check on the functioning of the bank. Find the
probability that he/she arrives on or before noon. Suppose the chance that the expert coming
between any equal interval of time is the same throughout the day. This means that the chance
of her arriving between 8:30 A M. and 9 A.M. is the same as her arriving between 3 P.M. and
3:30 P.M. Also consider the probability of her arriving between 8 A M. and 12 noon. This
would be four times the probability of her arriving between 8 A.M. and 9 A.M.

These common and specific assumptions lead us to a probability distribution called the

uniform density. To find the probability associated with continuous problems we use the

calculus. We define the distribution function F(x) as follows:
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Fx) = P(X £ x) = Pl-oo < X €%)
F flu) du

For the example of the efficiency expert, we need f{u) to enable us to calculate the
required probabilities. Since there is no chance of her arriving earlier than 8 A M. or later than 4
P.M., we define f{x) = 0 at any point corresponding to a time she cannot arrive,

For convenience, let 8 A M. = O(hrs.); let 4 P.M. = 8(hrs.). The uniform density is

defined as follows;

f(x) = ,wherea = 0, b = 8,

1
b-a
X
)= | i du = P(x
0 8
We define fix) =0ifx > 8
fx) = 0ifx < 0,
Now we can determine the probability that the efficiency expert will arrive on any

interval. To illustrate, consider determining the probability that she will arrive before noon. The

associated distribution function is:

4 it 4
F) = | 1dx = [0dx+] 1 du

i
- 8 00 6 8
4
=0+1x [0 = 1/2
8

Therefore, F(4) = 1/2. Of course, you could intuit the answer by common sense, but

common sense is sometimes wrong in mathematics.
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4
P(3) :( 3) (127 (1-1727° = 41 (1/8)(1/2)
(4-3)1 31

P3) = 4 « 1/16 = 1/4

Example: Continuous Case - Exponential Distribution

We will postpone discussion of how we select a distribution to fit data from the real
world until a later chapter. However, the exponential distribution is a very useful tool in giving
us measures such as the times that customers or planes enter systems such as banks or flight
queues.

The expanential density function is defined by:

fix) = 1 ¢® ifx >0
B

0 elsewhere, where B > (.

The corresponding distribution function:

X

Fx)=PX <x)= | 1e™®di=1-¢"®

1
6 B
Verify this for exercise #1.

To illustrate, let B = 3. We will discuss how to calculate B in the next chapter.
X
Fx) = [ (1/3) ¢ dt
0
0

2
FQy = [am e dt =% |2
0

F(2)

il
—

1
o
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F(2) would represent the probability that an event, like a customer entering a bank, would
occur between the time corresponding to t = 0 and the time corresponding to t = 2,

FG3) =1-e" =1-¢

F(3)-FQ) =(1-¢") - (1-e??) = ¥ ¢!

F(3) - F(2) represents the probability that an event would occur between the time
corresponding to t = 2 and time t = 3.
Propetrties

[£ {(x) is a density function:

Digcrete Case 1) f(x) =0

2y Zfx)=1

Continuous Case 1y fix) =0

2) | wf(x) dx = 1

[va]

b
3) Pla < x < b) = { f(x)dx

Example: Discrete
Let us verify that the probabilities f(x) associated with a die throw x is a density function.
flly = f(2) = §3) = f(4) = {(5) = f{6) = 1/6

Therefore, f(x) > 0and X x = X 1/6=1
1.2,3....6 L,2.3,.6

Example: Continuous

To show that f{x) = 1/2 ™ for x >

\'
<

=0 forx < {

is a density function for a continuous random variable:
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fx) =(1/2) e >0 Y x >0

oy o dx = Of (1/2) e™? dx
(v

M (1) dx = - |0

=0-(¢-1) = 1

103



EXERCISES 2.2
1. a)y Verify that f{ix)=1/8 0 <x <8
= ( elsewhere

is a continuous probability density function.
b) Verifythat | (I/BY®dt = 1-¢™®
1]

2. Find the value of the constant ¢ so that

fix) =cx? 0 <x <5
2

fl

0 elsewhere
is a density function. Then calculate P (1 < x < 4).

3. ay Letfix) = _1 -0 < X < oo. Show that f(x) is a density function
n(x*+1)

This means that one should show that f(x) > Oand | f{x) dx = 1.

o

b) Find the distribution function corresponding to the previous density function.
4, In an "ESP" Zeno deck there are five different symbols - five cards of each. Calculate the
probability of obtaining four correct guesses out of 210 trials [with replacement after

each trial].
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2.3 Joint Distributicns

The previous ideas are naturally generalizable to two or more variables. Consider the

case of two variables where we define the joint probability function of x and y as follows:

Discrete Case:; If'x, y are discrete random variables, the joint probability function of x
and y is defined by:
flxy) = PX=x,Y =y)
We know: ) fix,y) =0

2) L fixy =1
Xy

Consider the joint probability function associated with rolling two dice. Let x; = 1, x3 = 2, x3
= 3. Let yy = 1, y2 = 2, y3 = 3. The probability that x; = 2 and y; = 1 equals 1/36. This

would be written f(1, 1) = 1/36. Our table below would have 36 probabilities f(x, y), each equal

to 1/36.
y
X yi 2 R £ B
X1 f(x1,y1) f{x1,y2) f(x1,y3)
X2 f(x2,y1) f(x2,y2) f(x2,y3)
X3 f(x3,y1) f(x3.y2) f(x3,¥3)

Tor the joint probability table above P(X = x),Y =y ) =f(x;, y1) * P(X =x3,Y = y3) =
f(x3, y3). Of course, x and y could assume a countably infinite or finite set of values.

The marginal probability function of x; means that you are summing the row

probabilities for the ith row. This gives you the probability that x = x;. The formula is
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PX=xj) = (x)) =2 fixiyy i=12,.m; k=12..n
k=1

In the above table there are three rows so 1 = 1,2,3. There are three columns so k = 1,2.3.
If we created a joint probability table for the rolling of two dice, we would have six rows
(1=1,2,3,4,5, 6)and six columns (k =1, 2, 3, 4, 5, 6).

The corresponding formula for the marginal probability function for Y = yy is obtained by

adding the probabilities in the kth column. The formula is:

n
P(Y=w) =f(vi) = £ f(x;, y)
=1

Consider the following specific example:

y
X \ y1=1 yg =2 y3=13 Total

x =1 1/40 1/20 1/40 /10
=2 1/40 1/10 1/40 3/20
x3=3 1720 1/40 27/40 3/4
‘Total 1/40 T/40 29/40 I

3

PX=x;) = X f(xs, yo) = 1/40 + 1/10 + 1/40 = 3/20
k=1
3

P(Y=y3) = T fix,vys) = 1/40 + 1/40 + 27/40 = 29/40
i=1

Note that the totals of the respective marginal probability functions must equal 1. We

write this as;

The Marginal Probability Function of x = f(x) = Z f(x,y) = 1.
‘ ally

It

The Marginal Probability Funciton ofy = fi(y) = 2 f(x,y) = L.

all x
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The joint distribution function F(x,y) = P(X < x, Y £ y). For example, F(2, 2) =

1740 + 1/20 + 1/40 + 1/10. We are summing all entries for which x; < 2 and y; < 2.

Contmuous Case

A natural extension can be made to the continuous case.
f d

Pe<x<de<y<f) =11 fixy) ddy

<

[+

f(x, y) 1s called the joint density function of x and y.

The corresponding properties also hold for continuous random variables:

o fixy) 20

D 1T fxy) dxody = 1

-0

'The joint distribution function of x and y is defined by:

F,y) = PX £x,Y =y) = fy .[x fu, v) du dv

USel Y=Ea00
It follows that;

F = fix,y)
ox 8y

The marginal distribution functions of x and y are defined as:

X o0
() PX=<x)=Fx =] [] fuvdv ] du
-G Y-
Integrate the innermost integral first - then the outermost. If one has constant limits, one

can integrate in either order, but be careful with having the limits correspond to the variable of

integration.
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Similarly,
y [s ¢}

@ PYsy=Fm=] [] fund]d

U=-00 YE=00

Sometimes, Fy (x) and F, (v) are simply called the distribution functions of x and y
respectively.
We can take the derivative of (1) with respect to x and (2) with respect to y to obtain the

marginal density function of x and y. These are writien as:

o0 o]

fu(x) = | fixv)dvand f(y)= | fuy)du

Y. W00

To illustrate these concepts, let us examine the joint density.
flx,y) =clx +y] 0 <x <2, 0<y <1
=( elsewhere

To find the value of ¢, use the property of joint density functions

| { fix,y)ds dy = 1

Since f{x, y) = 0, outside of the rectangle defined by 0 < x < 2, 0 <y < 1,

12
weknow [ ¢x + y)ydxdy =1
g 0
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1 2
¢ [ ] (x+ydedy =1
G 0

2
0 dy =1

i
cJx +xy
o 2

i
¢c ] @+ 2y)dy =1
0

I

cl2y + y* [0 ] =1

cf2+1]1=1 — ¢ = 1/3

Therefore, fx,y)=1/3 (x+y) 0<x<2,0<y<]

= ( elsewhere

o0

fx) = | oy dy

-0

[s9]

For our example, f(x) = | 1/3(x + y) dy

~G0

1
fx) =] 173 (x + y)dy
0

Il
fu(x) = 173 [xy + ¥* |0]
2
f(x) = 1/3 [x + 1/2]
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EXERCISES 2.3

1. Is the following a discrete joint density function?
\ y
X ¥ y2
X3 1/2 172
X2 3/4 1/4
2. Verify that fix,y) = 1/3 (x + y) 0 < x <2, 0 <y < 1isacontinuous joint density
function.

3. a) Compute f(y) for
fixy) =13x+y) 0<x<2 0<y<]
={ elsewhere
b) Compute the probability that 0 < x < 1, 0 <y < 1/2 for the above
probability density function.
4. a) Compute ¢ for the joint density function
fixy) =cxfy, 0 <x<1,0<y <]

b) Compute £(x), fi(y).
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2.4 Independence

Independence is one of the thorniest problems in mathematical statistics. Most of

statistics, including the central limit theorem, is based upon independence assumptions.

The central limit theorem, which you will cover in depth in a full year sequence of

probability and statistics with calculus, is the basis for the confidence intervals and hypothesis
tests that were part of Chapter One. An elementary statement of this extraordinary and broadly
generalizable theorem is:

In selecting random samples of size n from a population with mean p and standard
deviation o, the sampling distribution of x approaches a normal distribution with mean p and
standard deviation o/\n as n--co. (Ifn > 30, the sampling distribution can be approximated
by a normal probability distribution.)

Using calculus notation, we state the central limit as follows:

Let X1, X3, ... be independent random variables which are identically distributed with

finite mean p and variance o* Letx; + X5 + ...+ X; = Sp

b
lim Pa < S,-nu <b) = 1 ™ dz

n—oe o/iNn V2x a

The computation of the integral requires numerical analysis - another highly important
advanced mathematics course. The assumption of identical distribution means that there is an
underlying formula that models and reflects the values that are obtained from the sample. We
will develop later in the book the commonly used probability distributions and the modeling

techniques that determine which one to use.
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Please note that the central limit theorem as it is nearly always stated requires that the
events (the random variables) are independent. We know little about confidence intervals and
hypothesis testing if the variables are not independent. To simplify matters, we usually assume
that the random variables are independent. If X and Y are independent events,

PIX 1Y) = P(X)+ P(Y)

This notation means that whenever X and Y are independent, the probability of X and Y
occurring equals the product of the probability of X and the probability of Y.

Discrete Case

Let X and Y represent the result of a coin toss on the first (X) and second (Y) flip of a
fair coin. X and Y are independent events. Therefore, P(X=head, Y=tail) = P(X=head) *
P(Y=tail)=1/2 + 1/2 = 1/4,

Consider a graduate modeling and simulation class with ten women and six men.
Suppose we select two students at random and determine the probability that both are women.
The two events are only independent if we allow the possibility that the same person can be
picked twice. Otherwise, P(2 consecutive women) = 10/16 » 9/15 # 10/16 + 10/16. We
conclude that the two events are not independent.

The binomial probability density

'n
PX) = (x) p{(1-p™*, x=0,1,.n
is used to calculate the probability of x successes in n trials. It can only be used if each trial is
independent and p, the probability of success, is the same for each trial.

Example 1: To calculate the probability of obtaining seven heads in ten coin flips:
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P(X=7) = C’/O (172) (1-12° = 11712
(One would use the table for the binomial distribution to calculate this probability with n=10,
X=7, p=203)
Example 2: Consider the joint probability density table below. If x and y are
independent, then f{x,y) = fi(x) * £i(y). To check independence, consider the following:
f3,3) = 1/16
H(3) =532
£,(3) = 13/64
fixy)=1(33)=1/16 # 5/32+13/64

Therefore, x and y are not independent.

y
X I 2 3 4 Total
I B VZY) 116 1/16 1/32 316
2 118 1/16 1/16 1/16 5/16
3 1/64 3/64 1/16 1/32 5/32
4 1/16 1/64 1/64 1/4 11/32

Totals  15/64 3/16 13/64 3/8 1

Continuous Case

If x and y are continous random variables, we can extend the formula from the discrete

case as follows. For independent random variables, P(X < x, Y < y) = P(X € x)« P(Y < y).

113



This leads to the marginal distribution functions Fy(X), Fy(Y) and the equivalent formula for
independent continuous random variables:
FX,Y) = Fu(X) - Fy(Y)
The converse of this result holds - namely if F(X) « F(Y) = F(X,Y) X.Y,thenX
and Y are independent events. If Fx(X) « F(Y) # F(X.Y) for any value of (X,Y), then X and Y
are said to be dependent events.

Consider the joint probability function that is represented by the table below:

X
0 1 2
0 1116 0 1/16 2/16
y 1 0 12 1/16 9/16
2 1/16 1/4 0 516
2116 3/4 2/16

Let us consider the value of the joint probability function, f(x,y) = f(1,1). The previous
result - if F(X) » F(Y) = F(X,Y), then X and Y are independent events - extends (o the marginal
distributions of x and y. This could be written as follows: if f{(xy, Xz, ... x,) represents the joint
distribution of n random variables x1, %2, ...X, and fi(x;) represents the marginal distribution of
the random variable x;, then the n random variables are independent if and only if f{xy, X2,... Xn)

n
= {1 fix:). The use of the phrase if any only if means that both the original statement and its
i=1
converse are {frue. The notation [| means the product fi(x1) * HH(xp) * f5(x3} * ... £u{xn).

In the example above, we have two variables. Therefore, we should letx; =x, xp = y.
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We want to check if f{1,1) = f(x) *» f{y). Wesee f{x) = 0+ 1/2+1/4=3/4. It follows that
x=1 y=1 x=1

fly) = 9/t6. f(1,1)=1/2 +# 3/4+9/16 = f{1)+ f(1). Therefore, we conclude that x and y are
y=1 x=1 y=1

not independent,

Example 3: Suppose x and y are continuous random variables with joint density

B

function: fix,y) = oxy, 0<x <2, 0 <y <1,

i

0 elsewhere

To find ¢,
21 2 1
Fool cxydydxz]m»f(cxyj 0 ) dx
0 0 0 2

2
— ¢ | x[1/2] dx
0

{2

— ¢ X 0 =1 — ¢c=1

2 2
Therefore, f(x,y)=xy, 0<x<2,0<y<1

= { elsewhere

Fu(x) = | [ xy dy dx
0

X 1
=[xy 0o d&
0 2
X
— Fx) = | x dx= x2
0o 2 4
v 2

Fiy) = | | xydxdy

0 0
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P
y {0 dy

Y
={ x
o 2
}/‘
Fy) = | 2ydy = y2
0

Now we have;

(M B = x4, Fy) =y

To check for independence, consider

i 14 i )
F(1,1/2) = P xydydx =] xv* |0 dx
O 0 0o 2
1 i
= | 1/8xdx = [ x/8dx = 1/16
G 0

We can substitute in (1) and find for (1,1/2), B(1) = 1/4, F (1/2) = 1/4. F(1) « F(172) = 1/4 » 1/4
= 1/16 =F(1,1/2)

From this example, we can conclude little. But if Fy(1)« F(1/2) # F(1,1/2), we can
conclude that x and y were not independent random variables,

Consider the general result that if x and y are independent, F(x,y) = Fu(x) ¢ Fy(y).

.

y
Flx,y) = [ ] xydy d&x
0 o
X Y X
= [ xv2lodx = [ xy? dx
0o 2 0 2
Fey) = X
4

We know that Fy(x) « Fy(y) = x* » ¥*
4
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From this calculus exercise, the result proves the independence of random variables x and y for
this example.

To glimpse the complexity of independence, inspect problem 6 of Exercises 2.6 later in
this chapter. This illustrates the problems with the intuitively appealing but false statement if x
and y have correlation 0, then x and y are independent.

Dependence is a nightmare for the theory of statistics. The major results in statistics rely
upon the central limit theorem and the central limit theorem is nearly always stated with
independence assumptions. In mathematical modeling we typically assume that the random
variables that we are studying are independent. This simplifies matters greatly and allows us to
proceed. However, in using real-world samples, pure independence is rare.

To learn about recent attempts in mathematical modeling to address the consequences of
dependence in one sample, please read "Dependent Random Variables and the Central Limit
Theorem," written by this author and Tim Sheehan (a graduate student from fona College). This
article has been reprinted later in this book together with commentary. The commentary and
suggestions should hopefully lead advanced undergraduates to participate in current research.
We thank Pergamon Press and the International Journal for Mathematical and Computer

Modeling for generously granting permission for us to include this article in this book.
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EXERCISES 2.4

1.

If you play blackjack poorly and give the house a 60%-40% edge each hand, what are

your chances of winning 5 hands out of 10?7 (You have a probability of 40% of winning

each hand.)

Let x and y be discrete random variables with joint probability function:

fix,y) = exy,x=1,23; y=1273

a)
b)
c)
d)

Findc
Find Fy(x)
Find Fy(y)

Does F(x,y) = Fx(x) * Fy(y)? Are x and y independent?

Let x and y be continuous random variables with joint density function:

ftx.y)

d)

= cxy 0<x<35, I<y<3
= 0 elsewhere

Findc

Find F(x)

Find Fy(y)

Does F(x,y) = Fx(x) « Fy(v)?7 Are x and y independent?

For exercise 3 above, find P(x+y < 2).

Let x be a continuous random variable with probability density function

fix) = x% 0 <x<b

a)
b)

Find b

Plot f{x)
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c) Calculate P(0 <x < 1)
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2.3 Mathematical Expectation

Mathematical expectation, also called expected value, is a central concept in statistics.

To illustrate the idea of expected value, suppose a coin is flipped. [If the result is a head, you win
$10; if the result is a tail, you lose $10. A gambling casino would go broke with this game
because the expected value of the coin {lip is 0, meaning that the casino would expect a profit of
Zero.

We define expected value as follows:

f

1}
z X F(Xi)
=1

Expected value = E(x)

= x1* P(xy) + 2 P(xp) +... + X * P(xn)

In our example there are two possibilities: x; = 10 if there is a head and x; = (-10) if

2
there is a tail. P(x;) = 1/2 and P(xy) = 1/2. Therefore, E(x)= ¥ x;*P(x;)=10+1/2 +(-10)»

1
1/2 = 0. This is the key to a fair game, an expectation of zero. But most gambling ventures
have high negative expectation. That is why most people lose.
If each event Xy, X2, . . . X, 1s equally probable, P(x;) = 1/n. This leads to the result:

E(x) = X1+ X3 +...X, orthe arithmetic mean of the values x..
n

The expectation of x is also written 1, or p and represents a weighted average of the
value of x.
Consider the example of "over, under and seven" - a common game at fundraisers. Two

dice are rolled, and you can bet over (8,9,10,11,12), under (2,3,4,5,6) or seven. If you win on
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over or under, you win the amount you bet. You win four times your money if you play and win
on 7. If one plays §1 on over, the expected value is computed as follows:

P(seven)= 6/36 = 1/6

P(over) + P(under)= 1 - 1/6 = 5/6

P(over) = P(under) = 5/12

E(x) = (1/6) (-1) + (5/12) (1) + (5/12) (-1)

E(x) = -1/6 = -.17
If you wager §1 on seven, the expected value is:

E(x) = (1/6) (4) + (5/12) (-1) + (5/12)(-1)

E(x) = -1/6 = -.17
Either way, one can expect to lose 17% of the total money one wagers. Of course, you could win
and walk away with your gains. But mathematical expectation enables one to determine the
mean (or what one could expect) if probabilities of events and the outcomes associated with such
events can be estimated.

Continuous Case

For a continuous random variable x with f{x} the associated probability density function,
oo
E(x) = I xf(x) dx
This is the natural extension of the finite case:

E(x) = Enl Xi P(xi)
=1

For example, consider the uniform density function,

flxy = 1 a<x<b
b-a
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= 0 elsewhere

This 1s called the uniform density and is very useful. For our example,

a b w
E(x) = [ x fo dx + | x fix) dx + [ x f(x) dx
-0 a b
a b o
= [ x+0dx + ] xefx)ds + [ x+0 d&
e a b
b
= 0+ ] x fx)dx + 0
ba
= | x _1_ dx
a b-a
b
L o = a+b
b-a 2 a 2

Therefore, E(x) = b+a
2

For an application of the uniform density, consider a bank that opens at 8 A.M. and
closesat4 P.M. Let 8 AM.=a=0. Let4 P.M.="b=8 [8 hours after opening]. Let x represent
the time of customer entry to the bank. For example, if a customer entered at 10 AM., x = 2.

E(x)y = bta= 8+0 = 4

2 2
This means that if 100 customers entered the bank uniformly from 8 A M. until closing at
4 P.M.,, and you assigned a real number from 0 - § to the time each customer entered, the best
estimate of the average time of customer entry is 4 or 12 noon. Of course, we could as easily
have leta=§ and b = 16.

Properties of Expected Value

Some important results on expectation include:
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D If ¢ is a real number, E(cx) = ¢ E(x)

2) If x and y are random variables, then E(x+y) = E(x) + E(y)

3) If x and y are independent random variables, E(xy) = E(x) « E(y)
4) If a and b are constants, E(ax + b) =a E(x) + b.

Generalizations to functions of two or more variables can be made. For example, if x, y
are two continuous random variables with joint density function f{x,y), then the expectation of
h(x,y} is given by:

w  w

Ehx,y) = | [ hey) fixy) dx dy

)

H'x,y are two discrete random variables with joint density function f{(x,y), then the expectation of
glxy) is:

Elety) = 2 2 ey fy)

Yy X

Countably Infinite Sample Space

Though finite and continuous sample spaces are common in modeling, a third possibility

exists - the countably infinite sample space. Countable infinity means a one-to-one

correspondence can be made with the natural numbers. Therefore, the set of all odd numbers,
the set of all even numbers, and even the set of rational numbers can be placed in a 1-1
correspondence (or pairing) with the natural numbers and form a countably infinite sample
space. To illustrate how the concept of expectation could be applied to a countably infinite
sample space, consider a game where you flip a coin and continue until you obtain a head. If
you get a head on the first flip, you win $1. Otherwise if the first flip is a tail, you start counting
the trials after the f{irst tail. You pay $x when the first head is tossed on the xth trial (x > 2). The

mathematical expectation for this game could be expressed as follows:
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E(x)

il

2(x) + P

1o 12 + (:2) VA+ (-3) 1/8+ (-4) 1/16 + (-5) 1/32+...

i

B(x) = -3/8 - 4/16 - 5/32 - 6/64+. ..

-1 (3/8 + 4/16 + 5/32 + 6/64+..)

= -1 (2 n)

n=3 2°
Ratio Test
Let us examine whether you have set up the possibility of infinite negative expectation.

For determining whether an infinite series converges, the ratio fest is very useful and nicely suits

a0
this example. Consider > o1

n=3 2"
The ratio test considers the limit;

Iim

| Rt 4]

aTey|
8y

Forour example, a, = n , ap = nt+ |

211 2n+1
lim Aprr 1= lim n+1
0 dn n—+o0 2”+§
n
21]

= lim n+1 « 172 = 122

N--2C0 n
The series converges since  lim al = 172 <1.
n—so0 dy
Therefore, E(x) = -1 (L), where L is some positive constant to be determined.

The exact limit was determined by Dr. Henry Ricardo in the following elegant
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demonstration:

To find > n
=3 2F
Step 1 For ix| <1, Y x"= 1 (1)
1:=() 1-x
by properties of infinite geometric progressions.
Step 2 Differentiate both sides of equation (1):
[l
1 = Xnx" @)
(1-x)* n=i

This is justified by the uniform convergence of the series of derivatives in any

inferval -1 < <x <r <1

Step 3 Multiply both sides of equation (2) by x:
X = x Ynx" = Y onx" for |x] < 1.
(1-x)* n=1 n=1
Step 4 Let x = 1/2.
o0 [#a]
12 = 2. 1 — 2= 3% n
(1-1/2)* n=1 2" n= 2"
Step 3 S= Y n =2 - 1/2 -24=1
n=3 2"

This game would not be a good idea for you to play, unless you are the person getting
paid the $x if the first head comes on the xth trial. However, at least no one will be in the
extremely disadvantageous position of infinite loss expectation and an expectation of (-1) isn't

that bad,
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EXERCISES 2.5

1. H T

20 (-12)

Find the expected value for the game with above payoff if Dr. Persi Diaconis (Harvard) is
flipping the coin and can obtain heads 52% of the time.
For this game, if a head is tossed, Dr. Diaconis wins $20. He pays $12 if a tail is tossed.
This poor expectation is typical of many common bets such as the lottery or if one plays
blackjack poorly at the casino.

2. Find the payoffs that should be normally associated with the rolls of a pair of dice if the
game were fair - Le., E(x) = 0. For example, P(seven) = 1/6. Therefore, $6 should be

paid if one plays and wins with seven.

3. Calculate E(x) for the density function:
flx) = 3 x° 0 <x <1
= { elsewhere
4. Prove the three properties of expected value,
5. Determine the mathematical expectation for a roll of dice where the house loses $1 with

over 7 (8,9,10,11,12) and wins #x with a roll of 7.

6. Prove properties 1-3 for mathematical expectation (continuous case) using calculus.
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But in the continuous case, we use the integral:
[ee}
or = | (x-p)? f(x) dx

-G

For example, consider the probability density function:

fix)y =3x%x* 0<x <1

= 0 elsewhere
oW 1
u =Ex) = | 3x¥®dx = [ 3x d&
o0 0
i1
= 3x' Jo
4
u = 3/4

1
o2 = [ (x-3/42 (3x9 dx
0

1
o= | (3x*-92x*+27/16x%) dx
0
1
variance = o2 = 3x° - 9%x* + 9 |0 = 3/80

5 8 16
standard deviation = ¢ =  3/80

Certain Properties of Variance

Six properties of variance that may be useful are:
D ¢ =Ex) - p?= EX) - [Ex®FP

Note: E(x) =

If x and y are independent variables, properties (2) and (3) hold:
2) Var(x +y) = Var(x) + Var(y)

3) Var (x - y) = Var (x)+ Var (y)
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Note that property (3) is different from what our intuition would guess. We present an

outline of a proof for property (3) below:

First we must prove property (2). For this we assume that x and y are independent

random variables. Let py = mean for x; py = mean for y.

4)

Var (x+y) = E((Ix+y] - [t py})?)

Group the terms and we obtain;

Var (x +y) = E(((x - 1) + (¥ - 1))

Multiply and we derive:

= B(((x - t® + 2 (- 1) (¥ - ty) (¥ - 1y)®)

Using the properties of expected value:

= B((x- ) + 2E((x - p) (y - 1)) + E(Y - 1))

We know that E((x - p) (v -uy))

= BE((x - ) + E((y - uy))

We also know that:

E(x - u) =0 and B(y - py) = 0

Therefore Var (x +y) = Var (x) + Var (y)

To complete our proof that Var (x - y) = Var (x +v), use property (5) that:
Var (ex) = ¢* Var (x), letting ¢ = -1 and substituting as follows:
Var (x -y) = Var (x + (-1y))

= Var (x) + (-1)* Var y = Var (x) + Var (y)

We can extend (2) and (3) to n variables:

Var{xj£ X% ...%:Xy) = Var(xy)+ Var (x2) +... + Var (x,)
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5) Var {cx) = c*{Var x)
6) E[(x-c)]lisaminimumifc=p
To illustrate property (1), consider our previous example.
flx) = 3x2, 0<x<l
= 0 elsewhere
We computed ¢? = 3/80 by the formula ¢*=E (x - p)?
Compare the procedure using (1).
o = E{(x?) - p*

Ex?) = | x* f(x) dx

w0

1 1
= [ x3x)dx = | 3x*dx = 3> |0 = 3/5
0 0

@ = B(e) - w

o> = 3/5 - (3/4y = 3/5 - 9/16 = 48/80 - 45/80 = 3/80
Covariance

We can extend these ideas to two or more variables, Let us consider the case of two
continuous random variables x and y having joint density function f{x,y). The meansof x and y

arc:

[vo] oo

u = B o= T [ x fixy) dxdy
pe = E@y) = | f y f(xy) dxdy

The variances are written using the standard definition:

oo [£9]
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o = E[(x-u)? = [ | (x-pp* fixy) dxdy

oy = EBl(y-p)? = | | (v-w)® fixy) dxdy

An important quantity that allows us to extend our earlier concept from Chapter One of

correlation coefficient (discrete) to continuous variables is the covariance of x and y, oyy.

cov (X,y) = Oxy = E[(X-py) (¥ - 1yl

In the continuous case,

Cxy = .{ j (X = Qx) (Y - Py) f(XvY) dXdy

In the discrete case,

n n

e = 2 2 X f(xayp)
=1 =
n n

by = Z}l _Zl yi f(xyp)
=1 j=

and covariance is defined:

ny

M=
5

1 (Xi- ) () - y) 10y

i

T

i

Let us illustrate covariance with an example.

Let fixy) = ax vy 0<x<1
0<y< 1
= 0 elsewhere
First, to find a,
fm fw fx,y) dxdy = 1
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1
0 dy

1 1 1

[ axy dxdy a | x¥2y
0 0

@,
—

0

fl
-

1
a | 12ydy = aR y¥2
0

30 that afd =1 and a = 4,

Thus, fx,y) = 4 xy 0 <x <1
0 <y <1
= 0 elsewhere
11
and py = E(x) = oj oj x 4xy dxdy
1 1 1

H

o430 ydy = | 43y dy
4]

1
43 y2 o = 213

f

From observation (or calculation) we obtain p, = 2/3, so that

1 1
oy = | [ (x-23)(v-2/3) 4 xy dxdy
1] 0

i

11
[T (dxzy? - 873 xy? - 8/3 x% + 16/9 xy) dxdy
6 0

B
0 dy -

1 1
0 dy - 83 [ x2 y2
0

!
[ 4x%3 y2
0

il

B
0 dy

1 i
0 dy +16/9 [ x¥2 y
0

1
83 | x/3y
0

= 0.
Let us consider an example of covariance for a discrete random variable. The table

below gives the joint probability function of two random variables x and y:
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0 1 2
y 0 1/6 1/3 1/6
1 0 0 0
2 1/6 0 1/6
px = E(x) = 0 [1/6+0+1/6]+ 1 [1/3+0+0] + 2 [1/6+0+1/6]
x=(0 f(x =0) x=1 f(x=1) X=2 f{x=2)

= 0+1/3+2/3 =1
e = X x £y where f; Isthe marginal probability function for x
My = 2y I, where fy is the marginal probability function fory.
gy = E(v) =0 [V6+13+1/6]+1[0=0=0]+2[1/6+0+1/6] = 2/3

Exy) = Z X xy f(xy)
Xy

= 0-0 -1 + 0-1-0 + 0-2-1/6 + 10 -1/3
x=0  y=0 {{0,0) =0 y=1 f{0,1) x=0 y=2 {(0.2) x=1 y=0 {1,0)

+ 1 -1 -0 + 1 -2 -0 + 2016 + 2-1 -0
x=1y=1f1,1) x=1y=2£1,2) x=2y=0 f(2,0)  x=2y=1f2,1)

+ 2 -2 -1/6 = 2/3
x=2 y=2 f(2,2)

Covariance of x andy = cov(x,y) = E(xy) - EX) (E(y)) = 2/3-1(2/3) = 0.

Now correlation between x andy  cor(x,y) = cov(xy) = 0
Ox Gy

Note the covariance between x and y = 0, but x and y are not independent,

Toshow fix,y) # fi * g
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Let x=2,y=2

2,2y = 1/6

f{x=2y=1, = 1/6+0+1/6 = 1/3

fly=2)=gy, = 1/6+0+1/6 = 1/3

16 +# 1/3 - 1/3 X, y are not independent.
To find o = E(x*) - (E(x))?

E(x*) = £ Z x* f{x,y)
X Y

= x=0y=0 + x=0y=1 + x=0y=2 + x=1y=0 + x=1y=1
02 0? 02 12 £1,0) 12 f(1,1)

Fx=ly=2 + x=2y=0 + x=2y=1 + x=Ry=2
12 £(1,2) 22 1(2.0) 22 (2,1) 221(2,2)

= 1/3 + 4/6 + 4/6 = 10/6 = 5/3
Similarly

E(y?) = 2 X y* f(xy)
Y

= x=0y=0 + x=0y=1 + x=0y=2 + x=1y=0 + x=1y=]
0z-1/6 120 22 1/6 0*-1/3 120

+ x=1ly=2 + x=2y=0 + x=2y=]1 + x=2y=2 = 4/3 = E(y?
2¢-0 02 1/6 17- 0 22 1/6

o = B(x?) - (B(x))?

i

5/3-1% = 273

il

6,2 = E(y?) - (BE(y)? = 4/3-(Q2/3% = 12/9- 4/9 = §/9

Cor(x,y) = Cov(x = 0

Gx Gy 273 89
Cor(x,y) = 0
Cov(x,y) = 0
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However, x and y are not independent. The converse holds. If x and y are independent,

cov(x,y) = 0.

Properties of Covariance

1. oxy = B(xy) - E(x) E(y)

2. If x and y are independent random variables, cov(x,y) = 0.
3. Ifcov(x,y) = 0, then x and y are not necessarily independent.
4. var{x+y) = varx + vary + 2 cov (X,y)

For example, to show property #1, calculate:
cov(x,y) = B[ (x - ) (¥ = uy)]
= B[XY - by = X+ s by
= E(xy) - E(uy) - E(uyx) + B (1 piy)
= B(xy) - tx E(v) - py B+ pa by
= E(xy) - EX) E(y) - By px B lly
Joocov(xy) = E(xy) - E(x) E(y)
Let us prove the following important theorem:
Th. Letx, y be independent random variables. Then cov(x.,y) = 0.
P{. Since x,y are independent, E(xy) = E(x) E(y)
cov{x,y) = E(xy)- E(x)E(y)
= EX) EW)-Ex) Ey) = 0
Note from our two examples the converse does not hold.

If cov(x,y) = 0, we cannot conciude that x,y are independent.
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According fo the great statistician Kolmogorov, independence is the central problem in
statistics. The Central Limit Theorem rises or falls based upon the independence or dependence
of the random variables.

Correlation - Continuous Case

Correlation for discrete random variables was treated in Chapter One. To measure
correlation for continuous random variables, we use the covariance, which is zero if x and y are
independent.

We define the correlation between x and y:

cor (x,y) = cov(x.y)

Ox Gy
For our earlier example,
fix,y) = 4 xy 0 <x <1
0 <y <1
0 elsewhere

we found cov (x,y) = 0, we = yy = 2/3

2

I

Ox

E[(x - ug]®

E[(x - 2/3)]2

I

ay?

o = B(x* - 4/3x + 4/9)

Though we know cor (x,y) = _0 =0, let us calculate 6y, oy
Ox Oy
11
o2 = [ [ (x®-4/3x + 4/9) (4xy) dxdy
0 6

HE!
[ ] (4xty - 16/3x% + 16/9xy) dxdy
0 0

il
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EXERCISES 2.6

1.

Calculate a, p1, 6* for the probability density function:
fix) = ae™ 0<x<1
= 0 elsewhere
Show that var (ex) = ¢ varx

Calculate a, py, 1y, 6% 6,2 cov (X,y) and cor (x,y) for the probability density function:

flx,y) = a x*y 0 <x=1
0 <y<1
= 0 elsewhere

Using the information from example 3, compute f; (x) and f; (y). Are x andy
independent?
Calculate a, E(x), var (x), E(y), var (y), cov (x,y) and cor (x,y) for the following

probability density function:

fix,y) = a(x+y) x =0,1,2
y =0,1,2
= 0 elsewhere

Suppose X is a discrete random variable with two values x = -4 and x = 4. Suppose the
probability of each equals .5. Lety be a discrete random variable with y = x2. Show that
cov(xy) = E(xy) - E(x) E (y). [This demonstrates the third property of covariance.
cov (x,y) = 0, but x and y are clearly not independent. This single counterexample

disproves the intuitively appealing (but wrong) converse of property two of covariance.]
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