





Use the z table to obtain the probabilities:

P(-1 <z<0) = 0398

PO <z<6.08) = 4999+

P(-.1<z<6.08) = 0398 + 4999+ = 5308

Therefore, there is a 53.98% chance of obtaining between 50 and 80 heads in 100 coin
flips. The slight discrepancy between 50 and 49.5 illustrates the difficulty of approximating
discrete phenomena (# of heads) with the area under the normal curve between two points
(continuous random variables).

We clearly cannot obtain 49.5 heads in 100 coin flips. However, for large n, the
discrepancy becomes minor. Another approach to use if n is at least 20 and p is at most .03 is the

Poisson distribution. In fact, as n — oo and p —0, the binomial distribution approaches the

Poisson distribution as a limit. We will discuss the Poisson distribution in greater detail later on.

Normal Distribution

We have frequently mentioned the normal distribution. Tts density function is:

f(X) - 1 e-(x-u)z/m2 . <X <

o V2%

where 1 = mean and o = standard deviation.
The distribution function, which requires numerical analysis to calculate, is defined as:
X 2 2
F(x) = P(Xsx)=__1 [ "5 g
V21
When one looks up values such as our earlier value of P(-.1 < z < 6.08), we are relying

on the table that has already computed:
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0 .- 6.08 s
J e-{x-u} o 4 + f e*(X*H) 26 dx
-1 0

= 0398 + 4999+ = 5398

To illustrate one of the basic formulas of numerical analysis applied to the integral of a
1

simplified normal distribution, let p=0, o=1, Wehave [ 1 ™ dx, which cannot be
0 2n
computed by elementary methods. One of the common formuias for such problems is Simpson's

rule which is written as follows:

sz fx) dx = /3 [f(x") + 4 f(x)) + f(x)]
X

with Error < h*/90 9 (E), xo <E <x,.

For our problem x¢=0,x, =1, h=b-a = x2-%, = 172
1n

3]

and f{x) = ™" Therefore,

1
[ SPdx = 1 12 [ + 4 4 1y
0 \2m VI 3

P=1/6 [1+4¢ + 17
f= 1/6 [1+4(.8825) + (.6065)] = .8561

1 T= 8561 = 3415
I 2.5066

If you look up the z value corresponding to z = 1.0, you find a probability measure of
3413, Our answer is accurate to 10°. The error analysis, which is an essential part of numerical
analysis, requires that you compute the fourth derivative of f(x). You then substitute some E

between X¢ and x» to overstate or maximize the error. This way you are safe to say that the
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actual error is less than your estimate. To complete the error analysis for this problem, the four

derivatives of f are computed as follows:

fix) = e

Foo= @)

s (@)D xEH 0 = ) e

= @D ET)EHET) @9 = (03

£ = (R E () + @) Bxr+3) = (3™

To return to the error formula, E <h*/90 f (E). Leth=1/2. For (x*+3), letx =0 to
overstate error. Similarly, for e™? let x = 0. We have to substitute a number between 0 and 1
(xp and x;) for E, but it need not be the same value in each parentheses of a complicated product
or quotient. But this art is an important skill that should be developed in an entire course

devoted to Numerical Analysis. Our final error is computed as follows:

E < (/2 & % = .0010
90

This error estimate is in harmony with our actual error which is .0002. We nearly always
overstate error in numerical analysis. This is because many numerical procedures are estimating
real world phenomena, and we want to be especially careful in our analyses which often relate to
people's safety and well-being,.

The reason that we were able to approximate our earlier probabilities was that the
binomial distribution can be approximated by the normal distribution if n is large. That is, if n is
sufficiently large and p and (1-p) are not too small, the binomial distribution can be
approximated by the standardized normal random variables with z = x - g where u = np,

1)
o= \]np(i-p). This is the formula that we used in our previous example,
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To illustrate further the connection between the binomial distribution and the normal
curve, consider a histogram which graphically represents the relative frequency of outcomes

from a dice throw. We will postpone the way to construct histograms until Section 3.3, We

know if we throw two dice the following probabilities are computable from simple analysis of

the 36 possibilities in the sample space:

/

P(2) 1/36 P(7) = 1/6
P(3) 1/18 P@g) = 5/36
P(4) 1/12 P9) = 1/9
P(5) 1/9 P(10) = 1/12
P(6) 5/36 P(11) = 1/18
P(12) = 1/36
The histogram is drawn below:
/’/\
TN
L4 1l
P 11 SR
1,08 08
4 )
PR 06 ==
- 103 03
0 1 2 3 4 5 6 7 8 9 o 1 12
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The normal curve is added above by a dotted line approximation and offers geometrical
insight into the connection between the normal curve and the relative frequence (or calculated
probability) of the binomial event of a dice throw.

Poisson Distribution

Another commonly used distribution in mathematical modeling is the Poisson distribution.

It was discovered by S.D. Poisson almost two hundred years ago, and it is safe to say that he never
anticipated that it could eventually be used to model interarrival time for drive-up banking
depositors,

The Poisson distribution is discrete and is given by:

flx) = PX-x)=2r e x=0,1,2, ...

x!
) is a positive real number

e™ can be computed with most scientific calculators or looked up in tables.

The Poisson distribution has the extremely unusual property that both the mean p and the
variance ¢* equal A.

One application of the Poisson distribution is when you are dealing with rare events. For
example, suppose n > 50 and p < 1/10. The Poisson distribution can give you a good estimate of the
probability of rare occurrences. Let p = .05 be the probability of contracting a rare disease ina
particular environment. Let n =200. The population under consideration equals 200. The various
values of x and corresponding probabilities represent x occurrences in the total population. To find

the probability that exactly four people will contract the disease, use the Poisson distribution:
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fix) = Ae* , A=np = 200(.05) = 10

x!

X = 4

fi4y = 108" = 019
41

We conclude that the probability of exactly four people contracting the disease is
approximately .019. The Poisson distribution approximates the binomial distribution if n is large
(e.g.,if n>50) and p is close to 0 (e.g., if p <.05). The approximation is excellent if n > 100 and
np < 10.

Central Limit Theorem

One of the most remarkable results in mathematics is that a great many distributions
approach the normal distribution and therefore can be approximated by a single curve.
The Central Limit Theorem states:
If %1.,X9,...X, are independent random variables with the same
probability function (discrete or continuous) having finite means y and

variance o2, and if s=x;+ X+ ... X,, then s, - ny  is normal (as n-0).
o/vn

This theorem was critical in our earlier material in confidence intervals and hypothesis testing.

Uniform Distribution (Continuous)

When in doubt as to which distribution to use for a continuous random variable, consider the
uniform distribution. Whether one wants a random number from 0 to 1 or to model a random time
from 8 A.M. to 4 P.M. for customers to enter a bank, researchers frequently use the uniform

distribution.
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A continuous random variable Y is uniformly distributed on an interval a < x < bifits

density function is written:

fixy = 1 a<x<hb
b-a

o 0 elsewhere

We have already shown (Section 2.5) that the mean of the uniform distribution is

p=E(x)=b +a. This makes sense. Consider a group of 100 people who have heights
2

uniformly distributed between 5'0" and 6'0". The mean would be approximately 5'6". In this

example,a=50"b=60" and p=E(x)= a+b = 11' = 5.5 = 5'6". The variance of
2 2
of the uniform distribution is given by ¢* = (b-a)? . We will leave its computation for an

12
exercise,

Exponential Distribution (Continuous)

We have introduced this commonly used distribution in Section 2.2, The density function

f(x) is defined by:

/B

fx) = e it x >0

1
B
0 elsewhere

To compute the mean of the exponential distribution, we evaluate

E(x) = ) wf(x) x dx
0

= I x e¥® (1/B) dx
0

Use integration by parts: Let u = x

147



dv = 1 (&

B
du = dx
v = - B
ol ] [v4] [e3]
[ xe"dg(_lm)dx = uv [0 - | vdu
0 B 0
E(x) = x ™o - [ -e™B gx
0
lim  -x e™® isofthe form -w+ 0.
K00
Use L'Hopital's Rule:
lim x = lim _-1 = 0
vow @B NIV
B
Since lim -x ¢™® = 0, we see that
KOO
[v.4] o
Ex) = [ d&x =B (1) d&
0 9 B

o0

= B e 0 = 0 -(B) = B,sothat
u = E(x) = B for the exponential distribution. We leave the calculation of the variance
(¢? = B?) as an exercise.

Geometric (Discrete)

We sometimes slightly moedity the binomial density so that we are concerned with the
number of binomial trials preceding (and including) the trial in which the first success occurs.
For example, what is the probability of selecting the first ace on the third trial (with

replacement in a standard 52 card playing deck)? The probability of the event is simply the
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probability of a non-ace on the first two trials and an ace on the third trial, P(an ace being chosen
for the first time on the third trial) = 48/52 » 48/52 » 4/52. Let p = the probability of the ace = 1/13;
let q = 1-p = the probability of the non-ace. In general for the geometric density,

fix)y = pa-, x =1,2,...
The mean of the geometric density is given by u = 1/p, the variance o? equals q/p® Let us

compute the mean of the geometric density.

Mean Geometric Density

E) = u= X ] pd™ , (@ = 1-p)
i

p is a constant and can be factored.

Bx) =u=p X jdp.p=<l

[y

E(x) has the following infinite series representation:

Ex) = p [l (-p)° +2 (1-p)! +3(1pP +...]

This is a difficult series to sum without the observation that

d (1p) = (1) j Q-py!
dp

This allows the substitution;

d  (1-py
1 dp

Ex) = (D p

TG g

We can differentiate the power series term by term and obtain the following:

Ex) = p d T (Ip)
dp =1

We now use the formula for the sum of a geometric series with r = (I-p) < 1
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Sy = = 1-p = 1-p

2 -
= L-(L-p) p

To complete the problem,

Ex) = (.pp & (d-p) = (-p) (1) = lp
dpp P’

This completes the demonstration that E(x) = 1/p for the geometric density. To illustrate
its value, consider rolling two dice. Suppose we define success as rolling a seven. P(seven) = 1/6.
The mean of the geometric density (if p = 1/6) for this problem equals

I = 6. This makes sense since six trials is a reasonable mean for the event of throwing
1/6

the first six.
The variance for this example

of =q/p? = 1 - 1/6 = 3/6
(1/6)* 1/36

30

@]
[
i

J. o = 30,
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EXERCISES 3.1

1.

Estimate using the normal density the probability of winning over 60 of 100 hands in
blackjack if you play very well and win with 48% probability.

Show that for the binomial density ¥ fix) = 1.

Are the probabilities assoctated with the normal density uniform? Explain.

[Does P(1 <z < 2) = P(3 < z < h4)?]

If the probability of being infected with a certain disease is p = . 01, find the probability that
of 250 people, exactly three have been infected. [Use the Poisson distribution.]

Show that the mean and variance of the Poisson distribution are both .

Why is independence critical to the central limit theorem? Consult a standard text on
calculus-based probability to examine the proof of the CLT.

Show that the variance of the uniform distributionis ¢* = (b-a)
12

Show that the variance of the exponential distribution is given by o2 = B2,
Hint: You must integrate by parts twice.

Show that the geometric density has variance o = g/p*
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3.2 Less Frequently Used Probability Distribiutions

Discrete Distributions:

Multinomial Distribution

Suppose we have k mutually exclusive events E;, Es, ..., E, where the probabilities
associated with the events are pi, pa,. ... px. Further we require pr+py+...+pe = 1. If
X1, X2, ..., Xg are random variables defining the number of times that Ei, B, ..., B will occur
in n trials, we require X, X2, ...,x; = n. The multinomial distribution gives the joint probability
that E; occurs ny times, E, occurs ny times. . .and Ey occurs ni times. This joint probability
function is written as follows:

P(xi=ny, X3=My, . . . X|&=ng) = n! pi' e palze Ll ik

ny! nl. . ng!
The expected number of times  E;, E,, ..., Ex will occurin n trials is written as follows:
E(xi) = np, EXx)= np..., E(xg = np

Hypergeometric Distribution

Suppose we have a deck of playing cards and select cards without replacement. The
probability of selecting an ace on the second card would change depending upon whether the first
card was an ace Or a non-ace.

Iftwo events A and B are not independent, we have the probability of A and B different
from the simple product of P(A) « P(B) whichis P(A " B) (or P(A and B)) for independent
events. Independent events are events like coin flips where the outcome of one coin flip does not

change the probability of the next. The concept of dependent events leads us to conditional

probability.
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and need numerical analysis to compute the distribution function. Fortunately this has been done
and all statistics texts feature a table of probabilities associated with standard normal z scores.
The mean of the normal density is p ; the varianceis o2.

Lognormal Density

A colleague who had been researching the stock market for several years told me that stock
prices are lognormally distributed random variables. Of course, it took a lot of experience and
goodness of fit tests, which is the next topic, to find this out.

Frequently it is helpful to draw a histogram using our data xj, X2, ..., X, We break up the
range of the data into k disjoint equal intervals. We let our v, value be the proportion of data
values in the mth interval (%m, Xm+1). The problem of selecting the number of intervals is tricky and
a commonly used approach is Sturge's rule. This rule says that the number of intervals x should
be selected by the following formula:

k =1+ loggn

Round up. For example, if k = 5.2, then let k= 6.

According to Law and Kelton (1991), this rule may not be very useful and several different
values of interval length should be experimented with until the histogram resembles some standard
density function,*

Several graphs of useful continuous probability distributions are presented at the end of this

section and include the uniform, exponential, gamma, normal and Weibull. If a density has a shape

*Law, A. and Kelton, W. Simulation Modeling and Analysis, McGraw Hill, New York,
1991, p. 361.
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similar to the gamma but has a big "jump" next to 0, the lognormal is a good "guess.” Its density is

written;
fix) = _1 g lbnxwe for x > 0
X V21 o
= 0 elsewhere

As in the case of the normal distribution, we cannot easily derive

X

Fix) = [ f(x) dx and require numerical analysis for such calculations. The mean
4
of the lognormal density is  e**%™; the variance is ¢™*% (€ - 1).
Weibull Distribution

If one wished to model the time until a certain item failed to work, the Weibull would be a
strong candidate. Its density is written:
Bl X
fix) = kx7eao forx > 0
= 0 elsewhere where 2 > 0 and B >0

As an exercise in the homework, express k in terms of « and B and show that the mean

n=alBT(1+1).
B

Beta Distribution

The beta distribution is used as a random variable to approximate percentages of
malfunctioning parts and other difficult estimations. Suppose the random variable is the time to
repair some failed piece of equipment. The first step is to estimate the smallest possible repair time
(x = a) and the largest possible repair time (x =b). We want P(x <b)= 1, We then want {o create

an appropriate probability density function on [a, b]. The beta distribution uses two parameters o
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and . It offers great flexibility because of the many different possibilities that the density
function can assume by adjusting o, and ¢, The density becomes the uniform density if «; =
= 1. This model is particularly useful if you have little knowledge about the random variable under
consideration. It is recommended for most real world applications that the density function be
skewed to the right. This density requires that o, oy > 0. Such modeling problems benefit from
the many graphs that the beta function has depending on the values of «; and oy . The density

function is written;

fix) = x*' (1-x? 0 <x <1
B (a, B) aB >0

1
B(a,B) zOJ TR ¢ BTH R 1

B(a,B) is called the Beta Function. The mean of the beta function p = _a_  ;its
a+B
variance 02 = aBB
(a+ B2 {a+B+1)

For a comprehensive treatment of the possible graphs of the beta distribution, please refer to
the earlier cited text by Law and Kelton, p. 338-339,
Graphs

We conclude this section with graphs of certain continuous probability distributions.

Uniform

fx) = 1

o
t
o
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Normal Density

N (0, 1)
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EXERCISES 3.2

L.

Calculate the probability of two consecutive aces (without replacement) using the
hypergeometric density.
Showthat '(k+1) = k! for k = 0,1,2,...
If there are 10 red balls, 5 white balls, and 15 green balls in a box, calculate the probability
that in 10 trials you choose 5 red, 3 white, and 2 green balls,
Graph the Weibull (g, 1) density if:
a) a =2
b) o =Y
a) Show that k can be expressed in terms of a and B for the Weibull distribution.
b) Express the mean of the Weibull density in terms of the gamma function
{1+ 1/B),a B>0
Show why numerical methods are necessary to obtain F(x) from the normal density

function.
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33 Histograms

A graphical representation of data - the hisfogram - might give you an idea of which

probability distribution to use in a problem. To create a histogram, follow the steps that are listed :

1

2)

3)

4)

Start with the Range
Range = Highest Value - Lowest Value

Divide by k to obtain k intervals. Each interval has width = range
k

Count how many elements of data are in each interval.

Draw the histogram.

For example, let the arrival time in a bank be recorded. The times 8 AM = 1 and 4 PM =

8. Let n = 55. Suppose the 55 times are:

.0,

1.5,
3.3,
5.4,

7.2,

0,00, WL L 02, 3, 07,09, 09, 1.0, 1.1, 1.1, 13

Le. 1.7, 20, 21, 22, 26, 2.8, 3.0, 3.1, 32, 32
33 34, 3.6, 37, 40, 41, 42, 43, 514, 52, 53
56, 6.0, 6.0, 6.1, 63, 64, 6.6, 67, 68, 7.0, 7.1

73, 7.6, 7.8, 80

Now let us complete the histogram.

y

2)

Range = 80 - 0 = §

The number of categories are arbitrary. For computational ease, let k = 8. We also

could have used Sturge's rule where k, the number of intervals can be selected:
k=1+logan=1+log, 55= 6.8 or7.

As Law and Kelton noted, several different values of k should be used in order to

best approximate the density function of one of the major distribution functions.
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interval = Aw = 8/8 = 1

3 Now create a table of frequencies.
interval frequency
0 - .99 10
I - 1.99 7
2- 299 5
3 - 399 9
4 - 499 4
5- 599 5
6 - 6.99 8
7 - 7.99 7

“ 4) Now graph the results. The graph is called a kistogram.

10

O Do s a3
|
-1

You can look at the resulting histogram and take an educated guess as to the nature of the

probability distribution. This one looks like a uniform density, since the times are fairly uniform.
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However, we need the material from Section 3.5 - Goodness of Fit Analyses - to determine whether

the distribution is what we believe it to be,
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EXERCISES 3.3

1, For the previous example, let k = 4. Draw a histogram for this set of frequencies.
2. Airplane arrival times are listed in the following chart (noon - midnight). Draw a histogram
to graphically represent the arrival times. 12 noon = 0, 12 midnight = 12. (n = 60)
O, 0, 1, 3, 6, 7, 8 9 10, 11, 12
1.3, 1.3, 1.6, 1.9, 2.0, 2.1, 2.3, 24, 2.5 26,
28, 29, 30, 32, 33, 34, 3.6, 3.7, 4.1, 4.1,
4.1, 43, 46, 47, 53, 58, 62, 68, 73, 73,
7.8, 8.0, 83, 84, 86, 93, 95, 9.7, 102, 10.2,

10.4, 10.6, 10.8, 10.9, 11.2, 114, 11.6, 12.0
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3.4 Maximum Likelihood Estimates

As a final step toward selecting a probability distribution to fit real world data, we need a
method to decide how sample data relates to the probability distribution in consideration. For
example, if we hypothesize that a dice roll is a binomial distribution, we may with to estimate p -
the probability of a seven. But perhaps the dice are loaded, and we don't know the true probability
of seven. We simply could observe p - the proportion of sevens in n trials, and this could serve as

our maximum likelihood estimate. Sometimes maximum likelilood estimates of parameters agree

with our intuition. For example, if we had a random sample of 100 U.S. citizens and asked them the
number of hours each watched television weekly, the sample mean x would be used for a

maximum likelihood estimate for the population mean of the national average for television

viewing. Of course, advanced students pursuing their graduate degrees in mathematics (like you)
will bring down this average. Since there are many instances where we can't easily determine an
appropriate maximum likelihood estimate, we need a systematic procedure.

Each possible probability distribution that we could use to fit real world data has parameters.
To illustrate, the normal density has two parameters, p and o . We will soon show how to take
sample results and estimate parameters such as @ for the normal density. Since u stands for the
population mean, it makes sense to use x , the sample mean, to represent the population mean.
However, common sense can occasionally lead us to incorrect mathematical results. We need a
procedure to arrive at these maximum likelihood estimates of the parameters associated with
probability distributions. The method is based on elementary and intermediate calculus and is

summarized as follows:
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Steps to Obtain Maximum Likelihood Estimates of Parameters of Interest

1) Consider n observations X, Xz, ....X, from the probability distribution f(x).
2) Since the variables are assumed to be independent, we can create the likelihood
function L. L = f{x;) « fixz) = ... « f(xy).
3) Take the natural log of both sides of the equation.
InL = nfix)+...+Inf{x;)
4) Take the partial derivative of In L with respect to the parameter of interest, say .

OlnL = _1 8f(xy) + ...+ _1 3fixy)
do f(x;) 8o f(xn) oo

3) Set 8Inl, = 0 andsolve for o intermsof X, X2, ... Xn
do

This is the maximum likelihood estimate, ¢ , for probability distribution parameter ¢ in
terms of Xy, X2, ... X
For example, consider the Poisson distribution:

fix) = Ae! x=0,1,2,...
x!

Suppose X1, Xz, ... X are n observed values for x. Follow the steps to determine the maximum
likelihood estimate for A.

1) We are given values X, Xz, .. . X

2} Lo= () » fixy) ¢ ... +f(x0)

. X~k < -h XA
. »&Mlmem“ * E;_ZL * 32012 ?_\“_l_],_e_
X! %o! Xy !
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1t
= ¥ x ™
Ai=1
Xl! Xz!... Xn!
iH
3) InL = (Y x) mAiA+(-0d)-lax - ... -Inx,!
=1
n
4} dlnl = %Y x[{1] -n
3 i=1 A

i1}

5) 2 xi[Ll]-n=20
=1 A

L X =nk - A= 3 X
=1 n
We ask the reader [Exercise 3.4, #1] to take the second partial with respect to L to show

that &L < 0. Therefore, 3 x; maximizes L.
3N n

Therefore, we can substitute the mean of observed x values as L in a Poisson distribution.
Then, as the next section will explain, we can test whether the Poisson distribution is a suitable
model for the real world data.

Next, consider the data that is discrete and believed to be modeled by a geometric
distribution. f{x) = p (I-p)", x = 0, 1,2, ..., with 0 < p < 1. We want to derive the maximum
likelihood estimate for p from the sample data.

1) X1, X2, . . . Xy are observed values of x - the number of trials before the first

SUCCEess.
n

1

I X
2 L=pa-p”~
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EXERCISES 3.4

AN .. e
1. Show that & = > x; maximizes L for the Poisson distribution.
n
A\ .. e e e .
2. Showthat p = _1  maximizes L for the geometric distribution.
x+1
3. For the normal density function f(x) = _ 1 oW/ 20"
V2T O

show that the maximum likelihood estimate of:

n

a) themean p = 3 x;/n [Assume ¢? is known.]
i=1

n
A~ Z (X] - H)z
b) the variance o©* = _i=l [Assume p 1s known, |
11}

4} Show that the maximum likelihood estimater of p for a binomial density is

M ~ . . . . A -~
p = X , X isthe number of successes in s independent trials. Show that p = x

S $
maximizes L.
n
A > In %
5) Show that p = i=] is a maximum likelihood estimator for p in the
n
lognormal density:
fix) = 1 gilmf/ast v 5 g
x V27 o
= { elsewhere
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3.5 Goodness of Fit Tests

The next step in creating models of real worid phenomena is testing whether the data we
observe fits hypothesized probability distributions. Rarely, if ever, do the data conform perfectly to
any probability distribution. What we want is a good fit between the data and the probability
distribution that will eventually model the data.

We will consider two goodness of fit tests in this section. The first - a y* (chi-square test)

- compares the observed scores with expected scores assuming a hypothesized probability

distribution. The second - a Kolmogorow-Smirnov goodness of fit test - compares the hypothesized

probability distribution to the empirical sample distribution.

To illustrate the chi-square test, consider a coin flip. Assume that you flip a coin 140 times
and obtain 80 heads. Could you conclude that the coin was fair? Let o = .05,

The level of Type I error, o = .05, means that there is a 5% chance of rejecting the null
hypothesis even if the null hypothesis is correct.

1 Use the formula 4* = > (observed - expected)?

expected
2) Draw a table.
Heads Tails
Obs. 80 60
Exp. 70 70

The only non-trivial part of the chi-square is obtaining the expected. We assume Hy: p =
p2 = .50 in hypothesizing the coin is fair. If the coin is fair, expected number of heads = .5 (140)

= 70.
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3) Nextcompute ¥* = > (O - EY = (80 - 70 + (60 - 70
E 50 50

Computed ¥* = 4,

4 Next, look up critical y* in a table.

The larger the value of computed 2, the worse the fit is between the observed data and the
hypothesized probability distribution. In this case, the hypothesized probability distribution was a
binomial with P(head) = P(tail} = 1/2.

The test requires that the expected frequencies for each of the k cells be greater than or
equal to 5. This could be expressed as np; > 5 for i = [,2,...,k The degrees of freedom, v,

for the chi-square test are: (k = number of categories)

a) v = k - 1 1f we don't use sample statistics to estimate population parameters.
b} v =% - 1 -1 if r population parameters have been estimated from sample
statistics.

For example, if we use a sample mean to estimate a population mean and this is the only
population parameter that has been estimated, then r = 1. For performing a goodness of fit test for
a normal density, we have to estimate both p and o. Therefore, r = 2 for this case.

5) For our example, k = 2, v = 1 df

Critical x* .05, 1 = 3.84
6) Conclusion: 4 > 3.84
vy Atthe a = .05 level, we conclude p; # pz. The coin is not fair.

A note of caution: If you go to the Taj Mahal casino, don't complain to the house if red

comes out 80 out of 140 times over the course of the evening. Over 20 sequences of 140 trials, we
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can expect to reject the null hypothesis once at the .05 level. And even if we monitored the table for
140 trials with the previous result, we can only be 95% confident of our result that

p1 # po2.

The chi-square distribution can be derived as follows:

Let x5, X2, ..., %y be v independent normally distributed random variables having mean p

= ( and variance ¢* = 1. Consider the following random variable ¥?:

yalalD SRl b GOl SN S
For x = 0,
x
PR x) = I [ u® e gy if x> 0

22T (v2) o
Plyr<x)y= 0 1if x <0.

This distribution function leads to the critical chi-square value that we find in statistical
tables. The chi-square distribution is a special case of the gamma distribution if o = v/2 and B=
2.

For a second example, let us use the chi-square goodness of fit test to determine whether the
digiis of an trrational number are uniformiy distributed. We will discuss further the notion of
uniformity in the chapter on random numbers.

Consider the table below as the frequency of 0, 1,2, ..., 9 that occur in a 1000 digit
approximation to the irrational number Vx (where x is not a perfect square).

0 1 2 3 4 5 6 7 8 9

Observed 95 103 102 90 115 94 103 98 106 94

Expected 100 100 100 100 100 100 100 100 100 100
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The observed are simply the frequency of digits that a computer approximation of Vx has
counted. The expected are obtained by use of the assumption that the digits are uniform,
Therefore, P(1) = P(2) = ... = P(9) = 1/10.

The expected for each category are calculated by multiplying 1/10 by total v. This yields

i

1/10 « (1000) = 100 for each category.

i

Use ¥ =3 (0O - E¥ = (95-100% + (103 -100) + ... + (94-100)2 = 4.84

E 100 100 100

Degrees of freedom = 10-1 = 9

CRITICAL »* .05, 16.9

Therefore, accept Hy: P(1) = P(2) = ... = P(9) = 1/10
The digits of Vx are uniformly distributed.

Kohmogorov-Smirnov Test

The chi-square goodness of fit test has several disadvantages. The number of intervals is
arbitrary; for example, for Vx we could have selected 100 intervals (60,01,...99) with P(O0)= .
.= P(99) = 1/100. Also, the test is valid only asymptotically - that is, as n - o,

For the Kolmogorov-Smirnov {(K-S) test, the intervals are not arbitrary, there is no need to
group data, and the method is valid for any n. The key to the validity of the method is that if x is a

continuous random variable with distribution function F(x), F(x) is uniformly distributed on (0.1).

The proof'is presented in great detail in Introduction to Probability Theory by Hoel, Port and Stone
(Houghton Mifflin, 1971), pp. 119-120.

The Kolmogorov-Smirnov test compares the empirical (sample) distribution with the
hypothesized probability distribution. The empirical distribution s, (x) is defined as follows:

D Arrange the sample in numerical order
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X1 S X = .00 S X

2) Define s,(x) = 0 if x < x;
im X <X < X4
| Xp = X

For the following sample of twenty data values from a distribution that we hypothesized to

be a normal distribution, N(0,1), o = .5, ¢ = .16.

Letxy,xz,....x0 = 0,0,.1,.1,.2, 3,4, 4,5 .5,.6.6,.7.7 8,9 10,1.0,1.0, 1.0.

i= 2 4 5 6 8 0 12 14 15 16 20

X; 0 1 2 3 4 5 6 7 8 9 10
F(x;) 0l 01 03 11 26 50 74 90 .97 1.0 1.0
sa(xi) 1 2 25 3 4 5 6 7 75 8 10

Note we use the maximum value of i corresponding to each element x; in defining
sp(x) = j/m. For example there are two values for x; = 0, both x; and xp. The variable s,(x;) is
calculating the cumulative relative frequency of x; - that is, the percentage of values less than or

equal to x; . For example, s,(0) = 2/20 = .1 since 0 has frequence of 2.

175



To compute F(x;) we need to find a z score for each x; and use a table of standard normal
values to look up the probability values corresponding to each z score. To compute the

z score for 0, z = 0-.5 = -3.125, The P value correspondingto z = -3.125is .001.
16

This is the value of F(0). The graph which you should always consult to understand the meaning of

the standard normal values, is below. The shaded value is F(z).

494

N\

AN

006

7=-25

To calculate F(.1),

) z=1-5= 25
16

2) Pz < -25) = .5 - 494
P = .006
The calculation of F(.2), F(.3), ..., F(1) is left to the reader.
To proceed with the K-S test, we use two values - the maximum value of | F(x;) - sq (x7) |
and the maximum value of | F(xj) - sy (Xj.1) | . These values are computed in a table of D, values,
where D, = sup | F(x) - sx(x) |. The D, table gives you critical values for the Kolmogorov-

Smirnov test. In our example, max | F(x;) - s, (x3) | = .22.

176



F(.2) - sp(2) = 22; also F(.8) - s,(.8) = .22
Next, max | F(x;) - sy (X.1) | can be calculated by looking at the diagonals of the table,
FECL) - 80 (0)] , JF(2) - su (1)), ete.

max | F(xi) - sa )| = [F(7) - s, (6)] = .30

Take the maximum of .22 and .30, whichis .30 and look up the critical value of D, ina
table. For n = 20, a = .05, Dy = .29. Our computed value Dy,,x = .30. Therefore, at
a = .05, we conclude that our sample is not from a normal density with mean .5, ¢ = .16.
However, if we adopted the marginal o = .10 level, critical Do = .26. So,atthe a = .10, we
could conclude that our sample was from our hypothesized normal density. Generally, we ook for
a = .05 as our standard level of Type I error.

The K-S test has several limitations. According to Law and Kelton (1991), these include the
facts that:

D For discrete data, the critical values are not easily obtainable. Numerical procedures
can be performed fairly easily only if n < 350.

2) The original form of the K-S test is valid only if all of the parameters of the
hypothesized distribution are known and the distribution is continuous.

3) The K-S test - in its original all-parameters-known form - has frequently been
applied to any continuous distribution with estimated parameters and for discrete distributions.

However, the probability of a Type [ error will be smaller than that specified.*

*Law, A. and Kelton, W. Simulation Modeling and Analysis (McGraw Hill, New York,
1991), pp. 387-389.
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EXERCISES 3.5

1. During an experiment for ESP, the roller of a die was asked to roll sixes. He rolled 250

sixes out of 1620 trials. Was his performance above the chance level (o = .05)?

2. For the following sample of 50 observations, test whether the distribution is:
a) uniform
b) normal [use both chi-square and K-S tests with ¢ = .03]

0,0, .1, .1, .1, .2, 2, 2, 3, 3, 4, 4, 4, .5, .5 5 .5 .5 .5 5 6,6 .7, .7, .8
9, L0, 1.0, 11, 1.2, 1.2, 1.3, 1.3, 1.3, 1.4, 14, 1.4, 14, 1.5, 1.5, 1.6, 1.6, 1.7, 1.8,
1.9, 2.0, 2.0, 2.0

3) How many times out of 1000 would the dealer have to win in order to conclude that the
results were greater than chance at a game where the house advantage is 52% - 48%7 (o =
.05)

4) In a bank the following times in minutes were observed for tellers to complete transactions,
Determine which probability distribution is a good fit. Use maximum likelihood estimation
together with the techniques from this section.

.01 233 1.15 123 235 512 .35
2.15 1.36 136  1.11 136 215 218
211 219 173 31% 115 511 256
2.19 311 13 137 315 246  1.63
1.38 1.21 123 219 239  1.23 1.41

1.96 1.56 215 236 232

178



3)

Use SPSS
For the following service times, test whether the probability distribution is:
a) Exponential
b) Uniform
¢) Normal
For the uniform test, use SPSS and separately use the chi-square goodness of fit tests after
using SPSS to create 4 categories, 25%ile, 50%ile, 75%ile, and 99+%ile.
Instructions
SPSS uses the K-S goodness of fit test
Steps
1) Go to File
2) Enter 48 numbers in VAROOO1 column
3) Analyze
4y Non-parametric
5) Legacy Dialogs
6) I Sample K-S test
7 Click VAR 0001 into test variable list
8) Click normal, uniform, and exponential
9) OK
10y  The K-S test uses Hy: the density is a good fit. H,: the density is not a good fit
If the asymptotic significance level < .05, reject H,. The data is not a good fit to the

hypothesized density. Goodness of fit is a poor name. The test only rejects very poor fits.
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For the chi-square test of uniformity, follow these steps:

1) VAR 0001 - entered data

2) Analyze
3) Descriptive statistics
4} Frequencies

5) Check VAR 0001 to variable(s)
6) Statistics
7) Cut points to 4 = groups
8) Use the 25%, 50%, 75% and 99%ile to identify the number of observed. Use the
interval to calculate the expected. Since the data range over (0,10), use (.251 - 0) = 251 as
probability to compute the expected as follows:
(2513(48)=12=1]
(45-.25)(48)=96~=1
Findl; and 1y and use X2 = X (0 - E)?
220 850 6.10 %.18 266 616 290
2.60 88 280 503 272 747 450
945 7.89 318 613 130 987  6.60
710 2.93 1.77 572 251 3.06 646
274 743 445 931 06 627  8.89

4.80 .81 8.46  6.12 1.20 990 833

8.93 1.96 04 348 7.58 1.63
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SPSS ACTIVITY FOR GOODNESS OF FIT TESTS

Goodness of fit tests with SPSS analyze data for the important and widely used continuous
normal, exponential, and uniform densities as well as the discrete Poisson density.

Let us open the 49 variable data set and use SPSS to analyze goodness of fit of the data to
the above densities.

We have already performed correlational analyses and revealed significant findings. Each
statistical test is based on proofs that are derived from the calculus. Each proof requires
assumptions. Cotrelation assumes that the pairs (x, y) has a bivariate normal distribution. The
testing of such an assumption is an advanced exercise in Numerical Analysis, since the normal

density function y = I St

has no simple integral to measure probability.

o V2n
The bivariate normal density is even more complex. Please refer to Burden and Faires, Numerical
Analysis, PWS Kent for a thorough explanation of how to find the probabilities of these densities,
enabling the researcher to perform a goodness of fit test.

On a practical level, sample sizes are usually too small to allow a bivariate density goodness
of fit test. We could settle for analyzing whether for any fixed value of x, the corresponding values
of y are normally distributed.

Let us use SPSS to test whether selected variables are normally distributed.

Use the instructions from Problem 5 - service time goodness of fit tests to accept or reject
the normal distribution as a good fit.

Note the output has .000 as the Asymptotic Significance Level for K-S goodness of fit test.

This low level (< .05) means that the normal distribution is not a good fit. The K-S test uses the
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following: Hg: the null hypothesis states that the distribution is a good fit. H,: the two tailed
alternative hypothesis is that the distribution is not a good fit.

One of the problems with goodness of {it tests is the tendency to accept distributions as good
fits whenever they are not significantly departing from a hypothesized distribution. Also the chi-
square test yields slightly different results, even when testing the same data as the K-S test.
Advanced students could spend profitable hours researching the circumstances where the two
goodness of fit tests converge or diverge, based on the data and properties of the exponential,
normal, and uniform distributions.

Let us follow the same steps, click the boxes for uniform and exponential distributions and
inspect the output. All three variables fail to qualify as uniform or exponential distributions as well.

As a possible follow-up activity the student is encouraged to collect 100 elements of data
from the real world. Possible rich areas for exploration are grade distributions for a course such as
Calculus (which may be normally distributed) or waiting times in queues in banks or stores (which
may be exponentially distributed).

An interesting application of the Poisson distribution, that would help students learn the
importance of this function, is to gather accident statistics from intersections that the Department of
Transportation cites as dangerous. For example, this author consulted for a school district to
analyze the safety of transporting students to a high school 28 miles away. Extensive research of
the route led to finding two dangerous intersections with P(an accident) = 3/100,000 at each. If we

simplified our model and combined the probabilities, we could estimate P(accident) = 6/100,000 =

3/50,000.
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During four years of high school, the bus would travel over these intersections 180« 8 =
1440 times. The Poisson distribution has two parameters, x and L. x refers to in this case the

number of accidents; A refers to n © from the binomial density and in this case n = 1440,

O = 3/50,000. X = 1440 (3/50,000) = .0864 P(0accidents) = A*e?* = .0864° &% = 92
! !
.« P(at least one accident) = 8% N ;
We rejected the plan to bus our children 28 miles. The risk was too great.
Please obtain data from the real world and perform goodness of {it tests with SPSS (K-S
test) and chi-square tests with the same data. Compare results. Explore situations where one test is

preferable to the other, based upon the properties of the data set. This is a fertile research direction

in Statistical Modeling.
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