CHAPTER FOUR

RANDOM NUMBERS

4.1  Preliminaries

There is - at least at present - no way to attain randomness. This is not a new insight by any
means. Von Neumann (1951) wrote eloquently about randomness in the following excerpt:

"Any one who considers arithmetical methods of producing random digits is, of

course, in a state of sin. For, as has been pointed out several times, there is no such

thing as a random number."
However, some random number sequences are better than others. We would like our random
numbers to:

D Be uniformly distributed.

2) Not be correlated with one another.

3) Be relatively easy to generate.
Before we show one of the fundamental and commonly used random number generators (RNGs),

we need to present some elementary number theory.

Number Theory

Number theory is the systematic study of the natural numbers. Divisible means that there is
no remainder after division. For example 6 = 3 = 2. Therefore, 6 is divisible by 3 - written
3|6

The remainder when a number x is divided by n has n possibilities, 0, 1,2, ..., (n-1). If
11 is divided by 5, the remainder is I. If x is divided by 5, the remainders could be 0, 1, 2, 3, or 4.

We use these ideas in the following language of number theory.
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11 = I {mod5) Thisis stated as "11 is congruent to 1 moduluo (or mod) 5." We could

interpret divisibility and modulus in two ways which inciude the following:

1) 2
) I-JT remainder 1 or

2)
5 lil~1 or 5 ‘ 10 remainder 0

In the relation 11 = 1 (mod 5), 5 is called the modulus and 1 is called the remainder. In

general, a = b (mod m) means that m |a-b.

Midsquare Random Number Generator
Von Neumann and Metropolis in the 1940s developed the midsquare method to generate

random numbers in the interval (0, 1). The method proposed is summarized as follows:

Start with any four digit positive integer N, called the seed.

1)
2) Take (Ng)® If (No)* does not have eight digits, add zeroes to the left to make it an

eight digit number.
Take the middle four digits of (N,)®. This number is N,

3)
4) Let N; = a;a:a:94. The first random number is 38,8384
5) Repeat the process where N, is the middle four digits of (N{)?, etc.

‘The midsquare method looked good in that the numbers generated appeared random.

However, the whole sequence Ny, Na, ... ispredictable given Ng, and worse - the results rapidly

approach zero.*

*Law, A. and Kelton, W. Simulation Modeling and Analysis, McGraw Hill, New York,

1991, pp. 420-424.
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For example, let Ny = 1256, N¢* = 1,577,536, Let N = 01577536. N; = 5775, The
first random number R; = 5775, (Ny)® = 33,350,625. N; = 3506. The second random number
generated is Ry = 3506, (N)* = 12,292,036, Our next random number is R; = .2920 and so

on.
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EXERCISES 4.1

1
2)
3)
4

3)

Prove thatif ajb, then a|bec.

If a|band alc, showthat al(b+c).

Is the converse of the proof in question #2 true or false?

Find the first 10 random numbers using the midsquare method in the seed Ny = 1239,

For the linear congruence 2 x = b (mod 3), find b if x = 0,x=3.

188



4.2  Linear Congruential Random Number Generators

The majority of random number generators are linear congruential generators (1.CGs). We

use the formula: N; = (a Ni +¢) (mod m), where m is called the modulus, a the multiplier, ¢
the increment, and Ny the seed. These numbers are whole numbers (0, 1, 2, ...). To obtain the
random numbers on [0, 1], take Ny/m as the ith random number.

For example, fet N, (the seed) = 5. let a = 2, ¢=4, and m=7.

Ny = (2 (5) + 4) (mod 7)
N, = 14 (mod 7)
Ny = 0

This is an exceptionally weak random number generator since
Ny = (2 ()+4)(mod7), No= 4(mod7) — Ny = 4

Simtlarly, Ny = (2(4) +4) (mod 7), N3

i

12 (mod 7) ~» N3 = 5, Ny = 0, and the sequence
repeats,

Our sequence, Ny, Nj, No, ... is 5,0,4,5,0,4,... The sequence of "random numbers”
is 5/7,0/7,4/7,5/7,0/7,4/7, ... This is a particularly poor candidate for randomness, but all
LCGs fall short. The looping behavior always occurs, but sometimes we can achieve a full cycle of
m distinct "random numbers" before the cycle repeats. The theorem that follows the definition of

relatively prime helps in selecting LCGs that have a full period.

A deflinition that is preliminary to the theorem is relatively prime. Two integers are

relatively prime if the only divisors that they have in common is 1. For example, 7 and 15 are both

divisible only by one; they are relatively prime. The integers 8 and 10 are not relatively prime
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since both are divisible by 2. The following theorem uses this concept and is helpful in selecting
effective pseudo-random number generators.

Theorem: A linear congruential random number generator has a full period if:

1) The integers m and c¢ are relatively prime.

2) If q isaprime,and qlm — qla-1.

3) If 4/m ~» 4]a-1.

For example, consider our equation for obtaining LCGs - Ny = (aN; +¢) (mod m). Let a
=6, m =5, ¢ = 7. The three conditions of the theorem hold. We leave the verification as an
exercise.

Let N, = 3 be the seed.

N; = (6 (3)+ 7) (mod 5)

Ny

i

25(mod5) — Nj =0

N,

i

GO+ Ty(modS) — Np = 2

Ny = (62)+7)(mod3) — N3y =4

Ny = (6 +T(mod5) — Ng=1

Ns = (6(1)+7)(mod 5) — Ns = 3, and the cycle repeats.

The cyeleis 0,2,4,1,3,0,2,4,1,3, ...

The associated random variables are 0/5, 2/5, 4/5, 1/5, 3/5, 0/5, 2/5, 4/5, 1/5,3/5, . ..

Irrational Numbers

Several years ago this author took several of his college students to listen to Persi Diaconis
{(Stanford University) lecture on randomness. Dr. Diaconis dismissed all audience suggestions on

ways to attain perfect randomness except when this author broached the irrationals as a possible
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source of random number sequences. The irrationals, such as ' 2, cannot be derived from modular
congruence relations from polynomial functions with rational coefficients. They are truly a
quantitative leap from the rationals. The proof of this recently proved theorem relies upon linear
congruence, arithmetic and divisibility, and is presented as follows:

Theorem: Let \/i‘ﬁ {.bibabs.... There is no polynomial function f(x) = ap+a;x + asx*+
. +ax", witha; € integers, where f(x) = by (mod m), where k=1,2,3, ... and
m € integers.

Proof: Assume such a function exists. Therefore, f{1) = by, f(2) = by, ... k) = by
{mod m). From elementary number theory we know that f(a + k) = f(a) (mod k) for polynomial
functions f(x). Therefore, \/ﬂZ_— repeats its decimal expansion every k digits.
\/’2—’ = 1.biba. .. by bybs. .. by . Thisis a contradiction. Therefore, no such polynomial function
exists.

[f the irrationals are a source of interest to the reader, you could turn your eventual research
Interests to the foundations of mathematics and to firming the foundations or to the infinite decimal

expansion as a future source of improved random numbers,

Multiplicative Random Number Generators

Multiplicative linear congruential random number generators are derived by deleting ¢ in
the previous formula. The revised formulais: N; = a Nj; (mod m). This is a special case of the
general formula: N;= (a Ny + ¢y (mod m) if ¢=10. If ¢ >0, we call these linear congruential

RNGs by the name mixed generators. According to Law and Kelton (1991), the improved

performance anticipated in (recently developed) mixed generators has not been shown.
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The multiplicative generators cannot achieve full period because m always divides ¢ =0
fcondition 1 of the last theorem]. For computational efficiency, we select m = 2° to avoid actual
division. The computer uses integral overflow for large m, e.g., m> 2!, The largest integer y
that can be represented is 2*' - 1, and if we try fo store any integer with h > 31 binary numbers,
we will lose the left-most (h - 31) binary digits. The remaining number is y (mod 2%). Thus we
can achieve modulo division by overflow for m = 2%

There have been problems in selecting appropriate values m = 2. For example, the very
poor and flawed random number generator RANDU used m = 2°', a = 2'%+3 = 65,539, ¢ =
0, and demonstrated a severe problem with a lack of uniformity on the unit cube. Uniformity on the
unit cube® means that if the cube were divided into smaller cubes, e.g., 1000 cubes with edge of
1/10, an equal number of random numbers would appear in each of the 1000 cubes. Of course, by
equal distribution in the 1000 smaller cubes, we rely upon a goodness of fit test like the ¥* to
compare observed o expected frequency where expected equals 1/1000 » N (N representing a
large sample of three digit pseudo-random numbers). Although no random number generator yields
truly random numbers, some generators are better than others. It took several years to uncover the

serious problems with RANDU.

*Law, A, and Kelton, W. Simulation Modeling and Analysis, 2nd ed., McGraw Hill, New
York, 1991, p. 444,
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EXERCISES 4.2

1.

2)

3)

4)

5)

0)

Find Ny, Ny, N3, ... for the following multiplicative RNG.

a) Ni = 5 (Niy) (mod 3), N, = 1
b Ni = 12 (Ni ) (mod 16), Ny = 3
¢) N =4Nn)(modl13), N, = 1

Find Ny, Na, N3, ... for the following linear congruential RNG.

aj N; = (2 Ni.j +3) (mod 5)

b) Ni = (3 Nj.1 + 5) (mod 16)

c) N; = (N +11) (mod 11)

Find Ny for (a) of the first exercise.

For the random number generator, N; = (5 Nj; +d) (mod 8), finda d necessary for N; to
achieve a full period.

Knuth (1981) showed that if m = 2°, then the period is at most 2°2.* What is the
maximum number of integers 0, 1, ..., (m - 1) that can be obtained for the Nis?

Use an advanced numerical procedure to generate the decimal expansion of an irrational,
e.g., V2, beyond machine storage. Design a method to select digits of this pseudo-random
number. Analyze the output and modify your algorithm to produce an improved generator.
Test for uniformity and for autocorrelation. (To test for autocorrelation review the section
on correlation from Chapter One and compute r. Test whether r = 0 using the t test that

is mentioned in this text.)

*Knuth, D. The Art of Computer Programming, Vol. 2, 2" ed., Addison-Wesley, Reading

Mass. (1981).
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7 Consider f{x} = x* + x - 2. Solve the following congruence relation for b,

a) 11 = b (mod 10)

b) f{(I11) = b(mod 10)

¢y 25 = b (mod 10)

d) f(25) = b (mod 10)

e) f{(35) = b (mod 10)
This last example illustrates an important result from number theory. The property that this shows
is the following:

If a = b(modm) and f(x) = ax"+ax™ +... + a, is a polynomial function with

integral coefficients for a;, then f{a) = f(b) (mod m).
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4.3 Mathematical Induction

One of the most elegant and powerful techniques in mathematics is mathematical induction.

To get an idea of induction (as it is familiarly called), imagine a set of dominoes, back to back. If
one falls, the next falls. We drop the first domino, and this causes the second to drop and so on.
Induction proofs usually prove a statement over the natural numbers (or perhaps extended to
whole numbers or integers). For example, consider the sum of the arithmetic progression.
s1 = 2, 2 =2+4 =6, S3 = 2+4+6 = 12,
s4 = 2+4+6+8 = 20, ss = 30, s = 42.
sn = n(a+ £) is the general formula where a = first term, { = last term, and
2

d = the common difference, which is constant and not part of the general formula. For our

example, s, = n (a+ L) = n{n-+1). Letus prove this by induction.

To sh.owzsn = n{a-+ L) isavalid formula for s, =2+4+6+8+ ...+ 2n, we use three
steps: ’

1) Show that the statement is true for n= 1.

2} Assume the statement true for n.

3) Show that from assuming the statement true for n, the statement is necessarily true
for (n+ 1).

Thus, we have shown that the statement is true for n= 1,2, 3, ..., namely all natural
numbers.

Let us return to the proofthat s, = n (a+ {) for our example.
2

I} Sp = 2+4+6+8+...+ 2n

a) Test if statement (1) is true for n= 1.

195



n=1-—s=2 (1) =2n = 2. This is true.
b) Next, assume the statement is true for n. This means the following:

S = 2+6+6+.., +2n =n(a+l) =n@+2n)=nn+1)
2 2

C) We must show that from assuming (b) we can show the statement is true

for (n + 1). This means the following: sy = (n+D(a+ )=
2

m+DE+2Mn+1p=m+D{l+n+D=n+D(n+2)
2

To prove this, start with (b) which we assumed. s, =n(n+1).
Add the (n + 1)st term to both sides. s, +2{(n+1) = gy =
n{n+1)+2{n+1). Factor the right side of the equation.

Spe1 = {(n+ 1) (n +2). This completes our proof using induction.

I}

X

Consider a second example from elementary calcufus. To show d"(xe®) = (x+n)e
d x"

follow the three steps.

1) Forn= 1 dxe) =xe& +& = x+1) ¢
dx

The formula holds for n = I,

2) Assume d"(xe") = (x+n) ¢e*

an
3 M xe) = d [d(xeY]
dx" dx  dx"

&l xe) = (x+n) e+ et (1)

dx"

= (x+n+1) ¢
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Therefore, (3) holds, We conclude that the above formula works V n=1,2,3,...

Now let us return to our linear congruential random number generator and use mathematical
induction to show that each N; is determined by the parameters m, a, ¢, and N, in the congruence
relation. Hence, the numbers that we derive from the congruence relation are far from random.

We have defined the set of "pseudo-random" numbers by the relation:

N; = (aNyj +¢) (mod m)

Let us use mathematical induction to prove that linear congruential random numbers are not
random. Indeed we will prove that:

For recursive random number
(1) generator N; = (a Ni +c¢) (mod m)

(2) that N; = (ai No + c(ai - 1)) (mod m)
a-1

Before we prove the theorem, start with examples:
Leta=6,m=35,¢=7,Ny=3
This example lets us achieve a full period of "pseudo” random numbers. This is because
1) m, ¢ are relatively prime.
2) Ifqgisaprimeandgq m — q a-1
5=¢,5 m— 56-1
HHE4m -4 —a-l

Since 4 does not divide m, 3 does not apply.

il

Substitute.  N; = (6(3)+7) (mod 5) in 1)above. N; = {

N():O

I

N = (6(0) +7) (mod 5), Ny = 2
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Continue. N3 = 4, Ny = 1, N5 = 3. The cycle is full - 30241,
Before we prove (2), let us start with examples. We will prove

2) Ny = (@ N, +c@ -1)) (modm)
a-1
Substitute

FLeti=3.

Ny = (65(3)+7(6-1)) (mod )

6-1
Ni = 949 (mod 5)
Ny = 4
Ng = (6% (3)+7(6-1)) (mod 5)
6-1
Ny = 5701 (mod 3)
Ny = 1

Now we are ready to prove (2) by mathematical induction.
(1) Show true for i = 1

N

il

aNp+c (al-1) (mod m)
a-1

Ny = aNg+c (modm) - (given)
Assume true for i

(2) Ni=aNy+e (@-1) (modm)
a-1

(3)  Must show true for i + 1)

Use N; = aNj +¢ (modm)
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Nii = alaNg+ec (@-1)] + c(modm)
a-1

ai*! Ng + ac(al-1) + c{mod m)
a-1

= a"l Np + c(a*l-a) + c(a-1) (modm)
a-1 (a-1)

fll

a*l No + c(ai*l-a) + ca-¢  (modm)
a-1 (a-1)

= a"l Np + cal*l-ca+ca-c {mod m)
a-1

= ai*l Np + c(ai*l-1) (mod m)
a-1
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6) Show using induction that:

a) 2" > 2n + 1 V>

1
W

b) 2" > n+ 1 ¥ n

i
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4.4 Tests of Randomness

There are virtually an unlimited number of tests that could be used to examine randomness.
For example, if we thought ¥2 were random, we could test whether 10% of its decimal expansion
(to perhaps 10,000 places) were each of the digits 0, 1,2, ..., 9. If we found that V2 were
uniform in the distribution of these ten digits for a sample of 10,000 places, we could then ask to
sample 100,000, then a million, and so on. As a result of the difficulty (if not impossibility) of
achieving perfect randomness, one researcher in random number generation described his quest as
"mystical." We present two standard tests for randomness - a chi-square test for uniformity and a
test for correlation.

Chi-Sguare Test for Uniformity

Consider random numbers xi, Xo, . . ., Xp that we hope are uniformly distributed on
[0, 1}, Divide [0, 1] into at least 100 intervals and take a large sample of x; so that each interval
has at least 5, e.g., n = 500 if we have 100 intervals. Use the chi-square test,

¥ = 2(0-Ey, (k-1) df. Forlargen, % will have the chi-square distribution. Our null
E

hypothesis is that the x; are uniformly distributed on [0, 1].

Irrational Numbers

As we discussed, Persi Diaconis neatly dispelled preconceptions of randomness by showing
that coin [lips, lotteries and radioactive decay were not good candidates for random number
generation. To my delight, Dr. Diaconis supported my hypothesis that the infinite decimal
expansions of irrational numbers were promising candidated for future random number generation.

To illustrate, suppose that we take vk (an arbitrary irrational, where k is not a perfect

square) to 5000 decimal places. To test for uniformity on [0, 1], we divide [0, 1] into 100 partitions,
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ie., [0.0,.01],[.01,.02],... We count the observed as the number of random numbers x; in each
partition. Since there are 100 partitions - each equally likely - the expected number for each
category is 5000 (1/100) = 50. Use the ¥? formula:

computed y* = > (O-E), (k-1)degrees of freedom, k = 100.
E

Then we compare the critical ¥* .05, 99df with our computed * value. Consider an imaginary
computed ¥* value = 93. Look up critical y? .05,99 = 124. Since 93 < 124, we conclude with
95% confidence that our random numbers are uniformly distributed. They have passed the first of
many tests of randomness.

Next we could generalize the chi-square test of uniformity to several dimensions. We could
take pairs of digits of Vk and test 2500 pairs for uniformity on the unit square, partitioning the unit
square into 100 equal squares with side 1/10. Or we could take triples of Vk and generalize to
1000 cubes with side 1/10. The procedure is cumbersome for paper and pencil, but not for a high
speed computer.

This makes it obvious that even irrationals won't pass every test for randomness. They have
to (or almost certainly have to) fail for some dimension
n=1,2,3,... Of course, at the .05 level of significance, we can expect to reject a true null
hypothesis 5% of the time.

Law and Kelton (1991) subjected RANDU, a random number generator, to the y* tests for
n=1,2, and 3. RANDU's generator is defined by:

Ni = 65,539 Ni.y (mod 2*})
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They found that the uniformity on [0, 1] and the random square was acceptable. However, the y?
value for three dimensions proved unacceptably high, making the RANDU unacceptable for

research.®
Correlation

We have developed correlation - one of the most important concepts in statistics - in earlier
chapters. In the context of random numbers, it is desirable that the sequence of "pseudo-random”
numbers Xi, X, ..., X, have zero correlation. We first compute the correlation between successive
Xi, 1., (Xn, Xn+1). Next we compute the correlation using covariance, X; with gaps 2, 3, etc. Lag 2
would look like (x1, x3), (X2, X4), (X3, X5), . .. Lag 3 would be represented (x;, x4), (X2, X5), . . .
Lag j would correlate (Xj, Xj+j), (Xitj, Xiszj)s + - - -

To illustrate, consider the decimal expansion of 1/7 = .142857142857..... If we were to
consider the autocorrelation of the decimal expansion of 1/7 for the first five digits, lag 2, we

would have the following pairs of numbers:

(x1,x3) = (1,2) This notion of correlating the digits of
(X2, X4) = (4, 8) a decimal expansion with itself is
{x3,x5) = (2,3) called autocorrelation

(x4, %6) = (8,7)

(Xs, X?) = (59 1)

*Law, A. and Kelton, D. Simulation Modeling and Analysis, McGraw Hill, New York,
1991, pp. 445-446.
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To test for zero correlation follow the outlined steps (Law and Kelton, 1991). Take random

numbers on the interval (0, 1).

1)
2)

3)

4)
5)
6)

7)

8)

9

10}

Define the correlation as p; = ¢jfc,

¢ = cov (X, Xis)) = B (X, %) = E(xi) E(xisg)

E(ui) = Y2 (uniformity assumption on [0, 1])

var (pi) = 1/12 (variance of uniform distribution)

¢ = E(nipeg) - (172)°

c, = /12

P = ¢jlco = 12 B (pj i) - 3

Obtain estimate of 3 by estimating B (p pivi) from Wi, Wisj o Ris2s - - -
h

Pi= _12 > Mg Hisgey - 3 . where
h+1 k=0

h= {(n-1 -1
]

var éa\j) = 13h +7 [Banksand Carson, 1984]
(bt1)?

Under H,: P; = 0, forlargen

N . \ .
Aj = _p has a standard normal distribution
Vvar (p;)

and we reject Hy, if | Aj | > zign

Carry out the test for several valuesof j - 1,2,3 as aminimum. Recall that

RANDU passed y* uniformity tests for j =1 and 2, but failed miserably for j =3,

To illustrate the computations associated with "pseudo-random number" generator's test of

covariance, consider the RNG that we introduced earlier in the chapter:
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Ni = (6 Nj; +7) (mod 5)
The generator is terrible, but the computations associated with our simplified covariance test are
clear and rather easy. The "random numbers" are 0,2,4,1,3,0,2,4,1,3,... Our pseudo-random
numbers on [0, 1], obtained by dividing by 5, are 0, 2/5, 4/5, 1/5, 3/5, 0, 2/5, 4/5, 1/5,
3/5, ... Consider the computations associated with lag j=2. Let n =21.* The value

h=_21-1 -1 = 9 Wehave already computed u, pp, us, ... = 0, 2/5, 4/5, 1/5, 3/5, 0,
2

2/5,4/5,1/5,3/5, ... From the formula from step (7).

A 9
pp= 12710 3 ek Misgenz = 3

k=0
Table
=0 ug = 1/5 w7 = 2/8
p = 2/5 te = 3/5 Mg = 4/5
w3 = 4/5 ay = 0 o = 1/5
g = 1/5 i = 2/5 Wae = 3/5
us = 3/5 Wiz = 4/5 g = 0
g = 0 = /5
uy = 2/5 pis = 3/5
tg = 4/5 tig = 0

*[In practice, nn should be several thousand and all statistics should be calculated by
computer. |
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k=0 k=1 k=2 k=3 k=9

”Sj = 6/5 [mipa + fatts + Uspy + podte F ...+ piopar ] - 3

D = 6/5[0(4/5) + 4/53/5) + 3/5(2/5) + 25(L/S) + (1/5)0 + 0(4/5) +
4/5(3/5) + (3/5)2/5 + 2/5(1/5) + (1/5)0] - 3

D = 6/5[4025] - 3 = -1.08

var(p) = 13(9 +7 = 124
(10)*

Aj =D/ Vvar(py = -1.08~N124 = -1.08/1.11 = -97

We next look up in the table (o = .05) eritical 7z = 1.96. Since 1-.971 =
97 < 1.96, we accept H,, namely that there is not sufficient evidence to reject a zero (lag 2)
correlation. Of course, for a more suitable example the computer would compute for large n all of
the statistics that we calculated by hand. This example simply was chosen for instructive purposes

with values that could be computed easily with a calculator.
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EXERCISES 4.4

1) A possible candidate for randomness produced the following frequency of digits
0,1,2,..., 9. Perform a chi-square test of uniformity.

0 1 2 3 4 3 6 7 8 9

502 497 499 521 488 531 497 503 456 996
2) Define N; = 9 Ni.; (mod 16), N, = 3. Take 1000 random numbers N,, Ny, ... Ngos.
Draw a table of frequencies like the above chart and list the frequencies 0, 1,2, ..., 9.
Perform a chi-square goodness of fit test, For n = 20, obtain the correlation r between a,
and a,+;. What can we conclude about N;?
3) For a "pseudo-random number” generator, lag j, we estimated /p\j = 1574 and observed h
= 1665. Atthe o = .05 level, can we conclude that the autocorrelation is zero?

4) For the pseudo-random number in example 2, perform the correlation test for n = 50, lag 2.
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