CHAPTER SEVEN

TWO MODELING EXERCISES

This section will feature two detailed problems which are practical applications of
mathematical modeling. The faithful reprint of these two clear examples was made possible
through permission from Byte and our thanks are extended for their generous willingness to share
them. Each article will be introduced by a commentary which reviews the key concepts that are
necessary to understand the modeling procedure. The commentary also suggests appropriate
enrichment activities for student research activities involving mathematical modeling. It is hoped
that these articles will encourage you to attempt your own mathematical models, perhaps with teams
of students attacking relevant problems and dividing responsibilities appropriately. For example, a
teamn of three students could include a computer specialist, proficient mathematician, and effective
writer. Of course, each could qualify in all three categories.

PROBLEM 1 - ANALYZING BUSINESS RISKS

Introduction
Mathematical modeling is a natural way to assess risk in starting any new business. This

article uses Monte Carlo analysis, which simply means that we utilize random numbers and

assumptions that some "expert" makes connected with the probabilities of levels of sales.

The sales distribution table in the article makes use of probabilities (Chapter One) and
requires the knowledge of the inverse transform method (Chapter Five) and the generation of
random numbers (Chapter Four) for the purists who wish to improve on their computer's random
number generation. The cumulative distribution is necessary in order for us to obtain a level of

sales corresponding to each random number x e (0, 1).
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Since 1t is unlikely that our random numbers will correspond exactly to the table values, the
author uses linear interpolation for intermediate values. To illustrate, consider the projected sales

X of a newly published book.

X P(X)

1,000 1.00
10,000 5
20,000 i
100,000 0

We project with 100% confidence (or probability) sales of 1,000 or more. We are 70%
confident of sales of 20,000 or more. Likewise, there is zero likelihood of sales exceeding 100,000.
In order to determine sales for our Monte Carlo simulation, we start with a random number P
between O and 1. Ifit falls between two table values P, and P; with corresponding sales
volume V; and Vo, linear interpolation would calculate the volume corresponding to P by the

given formula:

Vo= (P,-P) c (Va-V)) + ¥V,
(P1-12)

To illustrate, suppose our first random number was .65. To determine V for P = .65,
let Vi = 10,000, P; = .5, V, = 20,000, P, = .7. By substituting,

Vo= (-15) (10,000) + 10,000 = 17,500
-2)

The author uses the same method to establish the discounted selling price (line 62040 and
line 62050 of listing 1), the unit distribution cost (line 62070 and line 62080 of listing 1), and the

fixed cost (line 62130 and line 62140 of listing 1).
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Putting these into one equation gives us the author's main objective:

G(Gain) = SP « SV - UC = SV - FC

[Gain = selling price - sales volume - unit cost + sales volume - fixed cost)

The final point that the author makes is that taking ten runs of 200 samples gives different
information from a single run of 2000 samples. For the 2000 samples the mean is 27,600, but the
standard deviation i1s 13,400. If we take ten runs with 200 samples in each, we obtain a different
result, namely x = 27,600 (the same) but the standard deviation is 1000,

If we use classical statistics and assume that ¢ = 13,400 from the result of our single run
with 2000 samples, our sample of ten averages should have the same mean (which it does), but a
sample standard deviation o, = o/Nn = 13,440/\566» = G475,

Let us apply classical statistics to analyze the sample standard deviation of 1000 coming
from the average of the ten averages. The standard formula for estimating the population variance

o® from the sample variance §* is:

(n-1) s? < g* < (n-1) 8

Yy 0 1an2
Since we are taking ten runs to estimate o?, we letdf = 10-1 = 9. Substituting, we

obtain: (let a = .05)

9.1000° < o < 9 » 1000%
19.023 2.700

473.111 < o®* < 3,333,333

687 < o < 1825
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Clearly our sample result of 1000 is in accord with our population ¢ (estimate) of 947.5.
Of course, we are dealing with simulation data and have no exact way of determining population
statistics.

The computation of standard deviation may also be affected by the fact that simulation
outputs are always correlated. The random number generator for my most recent study of the
behavior of dependent random variables had an autocorrelation of (-.03). The likely reason for this
consistent result was the non-random character of our typical linear congruential random number
generators.

But another question arises. How can we adjust to the correlatedness that arises in
simulation output data? To illustrate this concept, let us try to make an adjustment of our statistical
thinking to capture dependence and its influence on our estimates. Let us concentrate on analyzing
the sample standard deviation of our simulation output data. Our objective is to estimate
6+ X (n), adjusting to the inevitable correlatedness that is part of any simulation output data. We
must assume that our random variables xy, xo, . . ., X, are from a covariance stationary stochastic
process. This means that

w=wfori=172..., -0 < op < w

o =o° fori=1,2,..., g* < o and

¢, i = COV (x5, Xisj) isindependentof 1 for j = 1,2,... We use the key
formula:

. n-1
o e X(n) = o » (1+2 3} (1-jm) Pj)n
j=1

We must estimate P; by the following formula:
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M A
Py = P = Ci_ where
$% (n

_ 0 — —
81‘ = 2 XXM [Xe-X (@) ]
i=1 n -]

There are other estimates for Py, but all are biased [E (ﬁ) # Pj], all have large variances,

A A
and all are correlated with other correlation estimates [COV (P}, P) #0 1%

Try programming to obtain an estimate ¢2 * 3‘(_(10) for the preceding simulation. Let us

review the notation with a table.

Sample Means Sample Standard Dev, Sample Size
X S n = 200
Xz S, m = 200
Xio Sto e = 200

Let ¢ = 13, 400%, our population estimate. Let 5(“ n) be the mean of our ten separate means.
pop P

This process if computationally cumbersome, which is why we rely on the computer to estimate o2

— YA s
[ X (10)]. We start by computing Py, Po, ..., P, We then find

*Law, A. and Kelton, W. Simulation Modeling and Analysis (McGraw Hill: New York),
pp. 146-147.
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10

$2(10) = T [Xi - X(10)]° PN
=1 , our 5%(n). We next calculate P; = _C;_
n S2 (n)
This gives us estimates for Py, P2, ... Py in our equation of interest. We substitute these

estimates into our equation:
— a-1
o [X{(n)] = o> +(1+2 Jél (I-jn)P;j)/m
to obtain our desired result, an estimate ¢* [S(d (n)]. Finally, compare ¢® [5(— {(n)] with the results of
our simulation §* {32 (10)] = 10007,
You have now sampled one of the biggest problems in statistics, how to adjust statistics that
are based on independence assumptions to the real world situations that are nearly always

dependent. Consider the following quote by a leading mathematician:

"Thus one comes to perceive in the concept of independence, the first
germ of the true nature of problems in probability theory." (Kolmogorov)

We will be looking more closely at dependence in one on the student rescarch problems next
chapter.

As a closing point that merits discussion and scrutiny, one should look at the two markedly
different standard deviations of S; = 1000 and S; = 13, 400. Which one would better serve the
prospective venture analysts? Certainly if one did not have a guaranteed ten years to stay in the
business, it would be misleading to use a statistic based on ten runs of 200 samples each. It would
be sounder and preferable to use population statistics (their estimate based on a sample of 2000
runs).

For example, if you had one child and wanted to know what the chances were that the child's

1Q was between 100 and 116, assuming o = 16, you would use the well known population
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statistic p = 100. The z value of 1.0 corresponds to a probability of .3413. Therefore, there is
a 34.13% chance of the child having an IQ [ on our woefully inadequate tests of IQ] between 100
and 116.

Similarly, if our venture analyst wanted to be 68% confident of his/her first year profit, we
would use the same concept and calculate the result: X £ 1 [13,400]. Our confidence interval
would be 27,600 = 13,400 or (14,200, 41,000). Author Pat Macaluso prefers the smaller standard
deviation that emerges from the average of the ten averages, it appears that the prospective venture
analyst would be better served by the standard deviation of 13,400, After all, some ventures may be
put out of business if their first year profit were only 14, 200.

% & F ok ok ok
A RISKY BUSINESS
AN INTRODUCTION TO MONTE CARLO VENTURE ANALYSIS
A simple method for analyzing business risks
by Pat Macaluso

[Byte, March 1984]

A business enterprise is aptly named a venture. It is a ship launched on a sea of uncertainty.
The business of business is the taking of intelligent risks. Precious resources are committed to what
can only be a hope of future gain. To reduce the risk, it would be helpful and profitable to have
some insight as to possible future events,

It turns out that future prospects, elusive as they are, can be estimated in a way that is

surprisingly useful for business purposes. The method involves four steps: (1) formulate a model
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of the venture; (2) distribute appropriate data in the model; (3) sample from the model data; (4)
analyze the sample.

The Monte Carlo Method

Aside from an investor's knowledge of a proposed venture, the Monte Carlo method requires
nothing more than a personal computer and a program that is almost trivial in its simplicity. T'll use
an example to illustrate how it works. We take at random a possible selling price, a possible sales
volume, and so on. The selections are made from a range of possible values in each case according
to the estimated probability of their occurrence. From this sample data, a corresponding outcome is
calculated. This process is repeated for the entire range of possibilities. The resulting collection of
outcomes is then arranged in sorted order. Examination of this distributed result yields information
on the range of future outcomes and the relative chance of their occurrence. We'll see how this is
done in detail later on, but the analysis might run something like this: in this business venture there
is a 10 percent chance you will lose your shirt; a 65 percent chance you will achieve a 15 percent
return on investment after taxes; a 5 percent chance vou will really clean up, and so forth.

Such a formulation, even if stated less colortully or dressed up in graphs and tables, may
sound strange or even unsettling. Wouldn't it be simpler and more understandable to take the most
likely seiling price, sales volume, etc., and come up with the most likely result? Unfortunately that
is not the case. Such an approach tends to underestimate the risks. It also throws away most of the
information we have that bears on future possibilities.

In projecting sales figures for a product, sales managers can say that a realistic sales level
will be 50,000 units. They can also say that there's little chance of 80,000 and no chance of more

than 90,000 units being sold. Further, they might add that it is very likely that at least 15,000 units
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and quite certain that 5000 units will be sold. The manager is expressing a wealth of hard
information along with his uncertainty. He is weighing the size of the total market, the effect of
competition, replacement rates, captive markets, limits on plant capacity, and so on. In other words,
estimates by an informed person, though couched in uncertainty, contain valuable information that
bears on future outcomes.

Faced with an investment decision, would you throw such information away, especially if it
is easily expressed in a form suited fo quantitative analysis? The most likely value or single-point
methods do just that. They are quite inferior to the Monte Carlo sampling approach that allows us
to use the extra information.

The most likely value method of risk analysis has tended to persist since calculations could
be made by hand and managers felt they understood the result. It certainly seemed more definite
and less threatening than a distribution that told of possible bad outcomes as well as the desired
profitable ones. Times have changed. Many executives, aided by easier access to computers, have
responded with increased sophistication as the safety of investments has become harder to gauge,

We can better understand the nature of the Monte Carlo method with the aid of a simple
example. Suppose we wanted to determine the chance of getting "snake eyes," or two ones, in the
roll of dice. We can calculate this precisely from probability theory as being one out of 36 tosses on
the average. But what if we had no theoretical solution, as is the case with business ventures?
There is another way to examine the chance of snake eyes. We can tally the result of thousands of
rolls of the dice. Even better, we can simulate it on a computer. The result will, in general, not be

exactly 1 in 36 but it will tend to approach it more and more closely as the size of the sample
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increases. We will have performed a random-sampling experiment. It is easy, it works, and it is
more than adequate when applied to business situations.

How Do I Get Started?

We present here three useful items for anyone who wishes to explore this method of risk
analysis: (1) a simple technique for building a model of the venture; (2) a way to construct a
sample from a distribution that is universal in its application; (3) a complete but elementary venture-
analysis program to carry out the calculations, The program (see listing 1) can serve as a core upon
which a more sophisticated or customized system can be built. More details are supplied in the
author's book (see reference at the end of'this article) but all the essentials are provided in this
article.

A word of caution is in order. Compared to the sometimes mind-boggling complexity of
actual business ventures, the model shown here will appear quite simplistic. Perhaps crude would
be a better description. What good then is such an approach, aside from tutorial use? The answer
may be somewhat surprising unless you are already well into this subject. Simple models work
remarkably well to the extent that they embody the essentials of the enterprise they represent. There
are advantages to stripping away nonessentials. At the very least, the act of analysis sharpens our
understanding of the venture, It reveals what weaknesses may exist in the data, which factors are
more critical, and so on.

The outcome of a simulation is a way to integrate the complexity of distributed values in a
model. It is a tool that helps the entrepreneur make the actual decision. That decision will weigh
factors that the model did not or could not include. The user must also decide exactly what the

problem is and frame the model accordingly. For example, is a product to be made in new,
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expanded, or shared facilities? If the [atter, how will the effect of displaced products and
production turnaround be handled in the model? Is the venture analyzed on its own merits or in
comparison with other projects? It is clear that the real work is done both before and after the
simulation. The program is just a convenient calculation tool.

Building a Model

The example we will use here is an estimate of the gain (or loss) to be expected in the
production and sale of an item with a small-to-modest market. The model we will use is a simple
one. Our purpose is to illustrate the technique without getting lost in the details. This will make it
easier to highlight the possible weaknesses, as well as the strengths, of this approach.

As a starter, we need a model in the form of an equation that represents the venture. How do
we develop such an equation? We can start at the top by noting that our objective, expected gain,
can be taken as the difference between total income and total expenses before taxes, Thus: Gain =
Income - Expense. We proceed with our top-down design by detailing income as: Income =
Selling Price x Sales Volume, or SP+SV using BASIC notation. Likewise we can assume that:
Expense = Fixed Cost -+ Variable Cost, or FC + VC. The latter can be expressed as: Variable Cost
= Unit Cost x Sales Volume, or VC = UC-SV, Putting it all together, we have:

G = SP+SV - UCSV - FC

Thus, the formidable phrase "formulate a model of the venture" requires nothing more than a
simple equation, Some arbitrary decisions will have to be made on just variable costs versus fixed
costs in a way that reflects the quantity produced rather than the quantity sold. Likewise, it may be

necessary to use a fraction of the anticipated selling price to allow for discounts. Every venture has

281



its own scenario. The user needs to adjust either the model or the data to allow for the specific case.
This can be done in stages by continuing the top-down expansion of the model.

Constructing a Distribution

Each value that may be assigned to a variable, for example, the sales volume, has a
probability of occurrence associated with it. We have seen an example of this in the game of dice
where a die has possible values of one through six, each with an equal chance of occurrence. The
collection of values and their associated probabilities for a given variable is called a distribution. In
this case, many tosses of a single die produce a uniform distribution, since each value has the same
chance of occurrence.

A more common type of distribution is represented by the heights of people. We usually
find many people in the five to six foot range, somewhat fewer in the four to five or the six to seven
foot range, and many fewer at other heights. If we tabulate and plot the count of the heights, we get
something like a bell-shaped curve. This is called a normal or Gaussian distribution. There are a
rather large number of different kinds of formal distributions, each with a different shape. Some of
them represent actual collections of specific things quite well. The problem with formal
distributions is that they require various constants to be determined and specified. It would also be
necessary to select a suitable distribution and perform special calculations or transformations to use
them.

We present here a simple distribution that avoids all of these complications. It will
approximately fit your data, whatever it may be, To illustrate its construction and use, we will

consider the number of units of a product that might be sold from a total population of 15,000 units.
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Numer Sold Probability Meaning

4,000 1.00 Certain to sell 4,000 or more

8,000 0.85 85 percent change of 8,000 or more sales
12,600 0.50 Even change of 12,000 or more sales
15,000 0.20 20 percent chance of selling all units
15,000 0.00 No chance of sales exceeding units produced

Several points of interest should be noted. First, we start and end with two certainties,
namely 100 percent and 0 percent situations. This is not at all difficult for someone who knows the
business being simulated. In our example, the user knows from experience that the established
outlets will absorb at least 4,000 units. The other limit of 15,000 units is also quite certain. In this
example, the user has decided to accept a 20 percent risk of loss of sales in excess of 15,000 units,
perhaps counting on a second production run if all goes well. This illustrates an immediate
advantage of this method of representing distributions. It naturally and easily takes care of cutoffs
at both extremes, including special situations such as captive outlets and lost opportunity.

Another important factor is that the distribution is in cumulated form. This is a great
advantage since other distributions must be converted to cumulative distributions before they can be
used practically. A cumulative distribution in effect adds up all the chances on one side of any
particular value. Instead of saying there is one chance in six of getting a four on the toss of a single
die, we say there is a 50 percent chance of getting a four or higher. We can see why we need
cumulative estimates in the case of a "continuous” distribution such as the number of units sold. It
would be difficult to deal with the 1 out of 10,000 chance that we will sell exactly 8,000 units.

Much the same applies to the 35 percent chance that between 8,000 and 12,000 units will be sold.
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It's much easier to deal with the 85 percent change that sales will be greater than 8,000. This will
become evident when we see how the actual calculations are carried out.

A close look at the estimated sales and their probabilities shows that they are not
symmetrically distributed around the 50 percent (or even) chance point. This is often a problem
with formal distribution functions since there are many varieties of skewed or nonsymmetric
distributions. Again we have an advantage in that our estimate of the probable distribution is
directly applied. Another feature is that the 50 percent estimate need not be one of the five
cumulative points. The three middle estimates can be any that are suited to the data. It is not
uncommon for the second and fourth estimates to be something like 95 percent and 5 percent or 90
and 10, etc. These correspond to easily visualized chances such as one out of twenty, one in ten,
and so on. These might correspond to a pessimistic and optimistic estimate in addition to a more
central or fifty-fifty estimate.

Sampling from the Distribution

We now have a distribution, that is, a quantitative expression of the uncertainties affecting a
variable in our model of the business venture. The question is: how do we use it? In our example,
the Monte Carlo method requires us to select a random cne of the possible sales levels between
4,000 and 15,000, The random selection must conform to the distribution, which is not uniform and
for which we have only five points. The simplest method is to assume that the distribution between
two successive levels or points is uniform. This allows us to obtain intermediate values by simple
or linear interpolation. A plot of our sales volume distribution in Figure 1 illustrates the process. If
we compare the tabulated distribution with the plot in Figure 1 and with the formula V = (((P1-

PY/(P1-p2))*(V2-V1)) + V1, we should be able to see how this works. Thus, using the BASIC
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random number generator, a random probability P between P1 and P2 selects a sales volume V
between V1 and V2.

There are several ways you could arrange such tables relating possible values to their
probability of occurrence. The important thing is to be consistent so that your tables, formulas,
program, interpretation, and logic all hang together. In the sample venture analysis we are
developing here, we will use the format of our sales volume example. The specifications for a
variable are: (1) use five levels with probabilities of 1 and 0 at the extremes; (2) estimate values in
terms of "equal to or greater than"; (3) always start with the estimate for which the probability
equals 1. That's almost all there is to it.

We need to develop similar tables for each of the variables in the equation representing the
venture. These are shown as DATA statements at the end of listing 1. The program is now ready to
sample them using a succession of random numbers. Each sampled value gets plugged into the
equation. This yields one possible outcome. The program does this repeatedly, saving the results in
a table of outcomes for further analysis,

Note how the fixed cost, which is a constant, is represented in the DATA statement on line
62140 of the program. This wastes random numbers and running time but it simplifies
programming and is very flexible. With this arrangement any variable can be treated as either a

constant or a distribution without reprogramming,
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Figure I: Sampling by interpolation. The probability of achieving a certain sales i gure ranges
from 1 (a certainty) to 0 (impossible). The approximate mid-range of 13,000 sales has a probability
of 0.4.

Does [t Really Work?

At this point you may be wondering whether we can really get away with titting or

representing the smooth curve of a distribution of expected values with straight line segments, and
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only four of them at that. It turns out that, in almost all cases, the use of precise distributions, or of
more points, makes little significant difference in the results. This has also been my own
experience with venture analysis in the chemical industry over many years.

If we think about it, we can see why this is so. The most obvious consideration is that any
estimate of future events is subject to error, however informed it may be. As Murphy, who by the
workings of his own law must be counted an optimist, would put it, "The future is uncertain; you
can count on it." There is a deeper reason, however, why this simplified approach works. Tt lies in
the use of a distribution or spread of values. The mere fact that an informed estimator has
approximate upper and lower limits adds far more information to the simulation than any
refinements in the detailed form of the distribution.

It is the introduction of distributions that transforms the formerly popular (but wrong)
single-point estimates into a sound and informative analysis. This does not mean that the forecast
of outcomes is necessarily correct. Even when wrong, the method provides good information on
which of the variables are most important. It may show that a doubling of promotional expenses
will have very little effect, whereas a 10 percent increase in inventories can turn a profit into a loss.
Such a use of venture analysis is called sensitivity analysis.

A Venture Analvysis Program

Now we know how to sample a distribution by going in with a random probability P and
coming out with a corresponding value V. The program shown in Listing 1 implements this and
does a complete risk analysis. It embodies our specific model example. The program is easily
modified for other venture analyses by simply replacing the equation, or model, in subroutine

31000. It is a no-frills program designed for ease of understanding.
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The style of programming followed here consists of putting everything possible into
subroutines. These are invoked by a short calling section at the start of the program.

It Iooks simple and that's the way it should be. We are looking at the main features of the
program, avoiding all detail at this level. We see that the program starts with a specification section
and ends with a sorted tabulation and display. The simulation is performed in three nested
FOR...NEXT loops. The task carried out by each called subroutine is described in the remarks to
the right.

Subroutines are used even if they are called only once. There are many advantages to this.
Each subroutine performs a single task, which is described in its header. This makes it easy to
follow the flow of the program. Another feature is that GOTOs, whether explicit or implied, never
branch out of a subroutine. This is not a dodge since a subroutine always returns to the point
immediately following its invocation. We could say that this programming style produces a bunch
of grapes (GOSUBs) instead of a bow! of spaghetti (GOTOs). It is much easier to pick your way
through a cluster of grapes than a tangle of spaghetti. GOTOs are used, of course, but they branch
to points within their own routines. This makes it much safer to modify the program when
necessary. It's about the closest approach we can make to structured programming in Microsoft
BASIC.

As a further aid to understanding the program, the meaning of the program variables is
shown in Table 1. The Monte Carlo sampling is carried out in subroutines 21000 through 23000
and is applied to the model equation in subroutine 31000. The outcomes are stored in the array

variable OU. They are converted to a cumulative distribution by a Shellsort in subroutine 41000,
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All that remains after this is to display the results. We could simply list our 200 outcomes in

a table with their associated probabilities. Thus, the 20" outcome in the list would represent the

minimum result of 90 percent of the trials. Such a table would not be very appealing, A better

solution is to show probable outcomes in steps of 10 percent.

Table 1: Variables used in the Monte Carlo Venture Analysis program.

AD
AV
CD
FC
FD
NR
NS
NV
ou
P
Pl
P2
PA
PB
PF
RS
S#
SD
SO
SP
SS#
ST
SV
uc
v
Vi
V2
VA
VB
XS

Standard deviation over all samples.

Average or mean.

Array of cumulative distribution values.

Fixed costs.

Array of averages for selected cumulative distribution points.
Number of runs.

Number of samples per run.

Number of variables in model equation.

Array of outcomes for a single run.

Probability,

Probability estimate point in a distribution.
Probability estimate point in a distribution.

Store of sefected P1.

Store of selected P2.

Step increment for summary cumulative distribution.
Random seed.

Sum.

Standard deviation.

Single outcome calculated from the model equation.
Selling price (effective).

Sum of squared deviations from the average.

Array of run statistics,

Sales volume.

Unit distribution cost.

Sample value calculated from a distribution.
Estimated value point in a distribution.

Estimated value point in a distribution.

Store of selected V1.

Store of selected V2.

Sink for dummy read, input, etc.
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Some Results

With our program complete, our model specified, and our estimates in hand, we can now

launch our venture thousands of times and see what the future promises. A typical run of 2000

samples gives the following projection. All values are rounded to the nearest $100.

Percent Chance

100

90

80

70

60

50

40

30

20

10

0

of Gain Exceeding

- 1,900

8,900
15,300
19,900
24,300
27,900
31,100
35,000
39,400
45,600

58,400

Not surprisingly, Monte Carlo simulation with its distributed inputs gives a corresponding

spread of outcomes. The first thing we note is that there is a possibility of a small loss. If we were

to plot the above results, we would find the chance of a loss is about 2 percent. The traditional

single-point method would ignore the possibility of loss and come up with an overestimation of the

gain as a most likely $30,400. This is very reassuring to people who like to keep their head in the

sand.

290



We have achieved our objective of placing a probability estimate on a range of possible
outcomes. Remember that we are dealing with essentially a one-shot proposition, and therefore the
information in the two extremes is meaningful. If we were really dealing with the long run, then the
extremes would hardly matter. We could be virtually certain of achieving something close to the
long-term expectation or average of $27,600.

In spite of all that has been and can be said, many users still feel uncomfortable with this
form of analysis. The reason is a basic one. This is the human predilection for twisting the facts of
uncertainty into something that seems more certain. The analyst can help here by working up the
results into a form the decision maker can relate to more easily. One type of analysis that is
guaranteed to spark interest is a sensitivity analysis. Simply rerun the analysis with the same
random seed but with a small percentage increase in sales. Do the same for each variable in turn
and show which variable is most important in affecting the outcome. In models with more variables
than in our example, such sensitivities are not always obvious.

Another possibility is to do some "what if?" simulations in which different possible
estimates are used. The results can then be presented as a statement of conditions or scenarios
required to avoid a loss or make a given profit. Presenting the results in the form of charts or curves
can also help.

Have We Taken Enough Samples?

You may have wondered why the program carries out ten runs of 200 samples each. Why
not one run of 2000 samples? By making several small runs instead of one large run we obtain

information on the adequacy of our sample size. Recall that a Monte Carlo simulation is in the
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nature of an experiment. It does not give a precise answer even when one is possible. By
examining the results of several runs we can get a measure of how well we are zeroing in.

Here's how it works for our example: The following averages are for ten runs of 200
samples each. All the figures, including the standard deviations, are supplied by the program. The
standard deviation is a statistical measure of the amount of variation or spread in the data

represented by an average.

Run Average Standard Deviation
1 28,100 14,100
2 28,000 14,000
3 28,700 13,900
4 27.400 13,200
5 26,800 14,000
6 27,600 13,200
7 26,100 12,500
8 29,000 12,700
9 28,100 13,900
10 25,900 13,200

As expected, we find a fair amount of fluctuation. What about our overall average and
standard deviation? For the 2000 samples we have:
27,600 Average

13,400 Standard Deviation
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We appear to have gained nothing from our ten-part breakdown. But there is more
information to be squeezed from this data. Suppose we take the average of the ten averages and,
again courtesy of our program, take a standard deviation. This time it is for the average of the
averages. We can do this since each average represents the same sample size. As expected, we get
the same average but note the new standard deviation:

27,600 Average
1,000 Standard Deviation

Statistical theory tells us that the true average has a 68 percent chance of being within one
standard deviation of $1,000 of our estimated average. If we had made only one run of 2000
samples, we would have little idea of how we were doing. The large standard deviation of $13,400
would have left us with a range of about $14,000 to $41,000 in which to expect the average in 2 out
of 3 chances.

Note that we have given no hard criteria or explicit formula for determining an optimum or
safe sample size. Experience shows that a venture analyst should have and does have a feel for
what is acceptable. For example, if you had made several ten-run simulations with different sample

sizes, you might have come up with:

Standard
Overall Deviation of
Samples per run Overall Averape Standard Deviation Ten Averages
20 28,100 13,700 33006
100 27,800 13,700 1700
200 27,600 13,400 1000

293



In view of the approximate nature of the estimates, a sample size of 200 appears adequate.
Should your model have more variables, you might need to increase the sample size beyond 200.
Fortunately, even fairly involved business-risk simulations need no more than five or six of their
variables to be distributed. The other variables that are treatable as constants can be directly
programmed as such into the model. This saves space and conserves the supply of non-repeating
pseudorandom numbers. It allows a realistic but no-frills simulation to be run on a microcomputer.
Conclusions

We have demonstrated with the aid of a simple example the nature of a Monte Carlo
simulation and how it can be applied to a business venture. In particular we have seen that:

. An expert's estimates of the uncertainties of his field - sales, production, marketing, costs,
timings, and trends - is valuable information. It is the raw material for risk analysis by means of
Monte Carlo simulation.

. There is a very simple, practically universal technique for expressing such estimates in the
form of a distribution and taking random samples from it.

. A model can be built as each situation requires by a simple top-down design method that
starts broadly and gets more detailed in stages.

. We can apply simple statistics through a program to get a handle on the adequacy of our
experimental (simulated) probe mto possible outcomes.

This article has touched on these subjects in an introductory way. Professional risk analyses
will require familiarity with the venture to be modeled. Professional programs may need to provide

for things like multiple years, time value of money, and various kinds of return on investment.

294



Listing 1: Monte Carlo Venture Analysis program, written in Microsoft BASIC, can be modified
for your own use by programming your own model equation and changing the numbers in the

DATA statements accordingly.

1000
1005
1010
1020
1030
1040
1045
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
11000
11010
11020
11030
11035
11040
11050

'MONTE CARLO VENTURE ANALYSIS

CLEAR
GOSUB 11000

FOR L=1 TONR

PRINT L
FOR J=1 TO NS

FOR K=1 TO NV

P=RND
GOSUB 21000
GOSUB 22000
GOSUB 2300
NEXTK

GOSUB 31000
NEXTJ

GOSUB 41000
GOSUB 42000
GOSUB 43000
NEXT L

GOSUB 44000
GOSUB 45000
GOSUB 46600

GOSUB 51000
GOSUB 52000

END

"e-w Initiate the simulation

t

NV=4

'Specify runs, samples, ete.
‘Carry out NR runs (10 max.)
'of NS samples each (200 max.)

'for a model with NV variables
'Generate a random probability

'Find its posn. in a distrbn. of values
'Find correspg. posn. of variable value
'Calc a sample value v for a variance

'Calc a sample outcome from the model

'Sort outcomes in ascending order
'Calc statistics for each run
‘Cale 11 cum distrbn points for each run

'‘Avg & std devn over all samples
'Std devn of avg of NR run averages
'Cum distn of outcomes over all samples

Display statistics for each run
Display distn of outcomes over all samples

DIM OU(200), CD(10,10), ST(10,2), FD(10)
PRINT"PATIENCE PLEASE. RUN NUMBER WILL DISPLAY WHILE COMPUTING."
INPUT"NUMBER OF RUNS";NR
INPUT"SAMPLES PER RUN";NS



11060 INPUT"ENTER RANDOM SEED (-32768 to 32767 ";RS
11070 RANDOMIZE RS

11080 TF NR 2 THEN NR=2:IF NR 10 THEN NR=10
11090 IF NS 10 THEN NS=10:IF NS 200 THEN NS=200
11100 RETURN

1o

12000 '--- Sum of squared deviations

12010 .

12020 SS#=0:FORI=1 TOT

12030 SS#=SS#+{OU(I)-AV) 2:NEXT LRETURN

12040 '

13000 '--- Standard Deviation

13010 °

13020 SD=(SS#/(T-1)) .5:RETURN
13030 '

21000 '--- Find the interval of P
21010 '

21020 FOR I=1 TO 5:READ P2

21030 IF P P2 and P =P1 THEN II=:PA=P1:PB=P2
21040 P1=P2: NEXT LREAD X#:RETURN

21050

22000 '--- Find the corresponding value interval
22010 '

22020 FOR I=1 to S:READ V2

22030 1F I=II THEN VA=V 1:VB=V2

22040 VI1=V2:NEXT ILIREAL X$:RETURN

22050 '

23000 '--- Calc. a sample value V. assign to model variable
23010

23020 V=((PA-PY(PA-PB)*(VB-VA)}*VA

23030 IF K=1 THEN SP=V

23040 IF K=2 THEN UC=V

23050 IF K=3 THEN SV=V

23060 IF K=4 THEN FC=V

23070 RETURN

23080 °

31000 '--- Calc. a sample outcome and running sum for model
31010

31020 SDH((SP-UCY*SV)-FC

31030 OUJ)=S0:S#=S#+S0

31040 RESTORE:RETURN

31050

41000 '--- Sort sample outcomes in ascending order
41010 '
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41020
41030
41040
41050
41060
41070
41080
41090
41100
41110
42000
42010
42020
42030
42040
42050
42060
43000
43010
43020
43030
43040
43050
43060
44000
44010
44020
44030
44040
44050
44060
45000
45010
45020
45030
45040
45050
45060
46000
46010
46020
46030
46040
46050

D=NS
IF D =1 THEN RETURN
DHINT(D/2):R=NS-D:EX=0

FOR I=1 to R:DI=D+I

IF OU(T) +OU(DI) THEN GOTO 41080
OT=0U(L):0U(1) =0U(DI):0U(DI=0T:EX=1
NEXT I

IF EX=0 THEN GOTO 41030

EX+0:GOTO 41050

r

'--- Avg. sum of sq devns, std devn for each run
T=NS:AV=S#/T:ST(L,0)=AV

GOSUB 12000:5T(1.,1)=SS#

GOSUB 13000:ST(L,2y=SD

S#=3:RETURN

¥

'--- Extract and store cum. distn in steps of 10%
PF=INT(NS/10+.5)

FOR I=0 to 10:CD(L,[)=0U(I*PF)

NEXT L:CD(L,0)=0U(I)

RETURN

'--- Avg and std devn over all samples and runs

S#=0:S8#=0:FOR I=1 to NR
S#=S#+ST(1,0):SS#=SS#+ST(I,1:NEXT I
AV=S#/NR:AD=(SS#(NS*NR-1___ .5
RETURN

¥

'--- Std devn of avg outcomes for NR runs

SS#=0:FOR I=1 TO NR
SSH=SS#HST(LO)-AV) 2:NEXT I
SD=(SS#/(NR-1)) .5

RETURN

'--- Final distribution in steps of 10%

t

FOR I=0 to 10:8#=0

FOR M=1to NR
S#=SH#+CD(M,I:NEXT M
FD(D=S#HNR:NEXT I
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46060 RETURN

46070 '

51000 '--- Display statistics for NR runs

51010 "

51015 PRINT CHR#(26)

51020 PRINT"STATISTICS FOR";NR;"RUNS OF";NS;SAMPLES EACH. SEED=";RS
51030 PRINT™

51040 PRINT'RUN AVG OUTCOME STD DEVN"
51050 PRINT"------ e "
51060 PRINT™

51070 FOR I=1to NR

51080 PRINT IST(1,0),ST(I,2:NEXT1

51090 PRINT™"

51100 PRINT"AVG=";AV,"STD DEVN=",SD

51110 PRINT™

51120 INPUT"PRESS RETURN TO CONTINUE"; X#

51130 RETURN

51140 °

52000 '--- Display outcomes over all samples and runs

52010

52015 PRINT CHR#(26)

52020 PRINT"OUTCOMES FOR"INR*NS;"SAMPLES. SEED=";RS
52030 PRINT™

52040 PRINT"% CHANCE OUTCOME WILIL EXCEED"
52050 PRINT mcmmcmmmnees e "
52060 PRINT™

52070 FOR I=0to 10

52080 PRINT 100-1*10,FD{Iy:NEXT I

52090 PRINT"™

52100 PRINT"AVG=";AV,"STD DEVN=":AD

52110 PRINT™

52120 RETURN

52130 '

62000 '--- Data statements in order as per subr. 23000

62010 ' One pair (5 proby, 5 values) for each model var,

62020 *  Chance NV in subr 11000 if model in 31000 changes
62030 '

62040 DATA1 | 90, .50, .10,0 , 'SP proby; discount-
62050 DATA 3.00,3.40,4.20,5.00,5.40, 'ed selling price

62060 '

62070 DATA 1 , .85, .50, .15,0 , 'UC proby.

62080 DATA 0.40,0.45,0.50,0.70,0.90, 'Unit distrn cost

62090 '

62100 DATA1 , .85, .50, .20, 0, 'SV proby.
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62110
62120
62130
62140
62150
62200
62210
62220
62230
62240
62250

DATA 4000,80600,12000,15,000,15,000, 'Sales volume
DATA 1 ., .80, .50, .20, 0 'FC proby.

DATA 14000,14000,14000,14000,14000, 'Fixed cost

FOR A DIFFERENT VENTURE, PROCEED AS FOLLOWS
'REPLACE LINE 31020 WITH NEW MODEL EQUATION.
'MODIFY LINES STARTING AT 23030 ACCORDINGLY.
'MODIFY MV IN LINE 11020 IF NECESSARY.

EDIT DATA SECTION AT 62000 FOR NEW ESTIMATES.
END

A personal computer makes it convenient to include such features incrementally, The

simplicity of Monte Carlo sampling allows each programming addition to be small and modular.

Fast execution times are not necessary. This allows interpreter languages to be used for each

change in models and data. The availability of state-of-the-art implementations of BASIC and

APL particularly on the IBM PC, is favorable to increased use of this form of simulation.

This article includes material from the author's book, Learning Simulation Techniques on

a Microcomputer Playing Blackjack and Other Monte Carlo Games, published by Tab Books.*

AR EEET

*Macaluso, Pat. "A Risky Business," Byte, March 1984, pp. 179-191,
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PROBLEM 2 - QUEUE SIMULATION

Introduction

We all experience queues when we are stuck in traffic or waiting in line at a checkout
counter at a supermarket. This program analyzes the average waiting time and efficiency
{utilization) of service stations.

The problem of modeling a queue can be divided into components as the article "Queue

Simulation” explains. The basic components of the problem are:

1) Arrival time of a person (unit).

2) Interval between arrivals.

3) The number of servers.

4) The rate at which the server operates.

Before we can model the queue, we need to observe the real world situation and record
data. To illustrate, suppose we want to develop a function that would model customer arrival
into a queue, such as our arrival module that was written in Applesoft BASIC. Suppose we went
to the business and spent a day (hopefully a typical one) and recorded when the customers
entered. Let Table 1 represent the record of arrival times, restricting our model to business
between 8 A M. and 10 AM, Our table indicates that the first customers entered at 8 A.M., our
second customers entered at 8:10 A.M., and so on. In practice, sample size should be much

larger than the 15 tn our illustration.
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Table 1 - Let X = Time

.00 AM. 8:42 9:10 9:24 0:45
8:10 8:45 9:15 9:26 9:48
8:24 9:00 9:18 9:32 9:51

We next need to convert the times into useable data. To achieve this, fet § AM. =0, 10
AM.=2,830 AM. =.5,9:15=1.25, etc. The converted data is listed below in Table 2.

Table 2 - Let Y = Converted Time

0 v 1.2 1.4 1.8
2 8 1.3 1.4 1.8
4 1.0 1.3 1.5 1.9

Suppose we wanted to test the hypothesis that customers arrive uniformly between 8
AM. and 10 AM. We simply divide the two hour interval into k intervals; arbitrarily let k =4.

We count the number of arrivals in the four intervals below:

Y Observed Frequency
[0, .5] 3
[.5, 1] 2
[, 1.5] 6
[1.5, 2] 4

We arbitrarily assign end points to the left hand of the interval, though more exact timing

measures preclude arrival at a point.
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We now compare the observed frequency with the expected frequency. Since we assume
that our arrival times aré coming from the uniform distribution, we can let the expected
frequency in each of the four categories be equal to 15/4 = 3.75.

Next use the familiar chi-square formula:

X2= 3 (O-EP = (3 -375P7+ (2 3752+ (6~ 375+ (4 - 3.75)?
E 3.75 3.75 3.75 3.75

Jo  X® o= 233

Compare this X? value with our critical X* .05, 1 df = 3.841. Since 2.33 < 3.841,
we conclude that the uniform distribution is a good fit. Remember that the goodness of fit test
accepts most distributions as good fits and only rejects those with significant discrepancies. Also
there is no uniform way of deciding on the number of partitions, as we decided on four above.,

We now can generate random numbers with the uniform distribution using our
distribution function and the inverse transform method covered earlier.

To complete our illustration of how we generate our uniformly distributed arrival times,
start with the uniform distribution:

fix)y = _1
b-a

, X € f(ab)

For our example, a = 0, b = 2. Therefore, f(x) = 1/2 is the appropriate density function.

Next we find our distribution function.
X
F)= [ 172 dt = x2
0

Letting y = x/2 wesee that F' (v) = x = 2y.
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We next rely on our computer to give us random numbers Y on the interval (0, 1) and
substitute F* (y) = 2y to generate arrival times that are uniformly distributed on our 8§ A.M. to
10 A M. interval.

People have observed that Poisson probability distributions, not uniform distributions,
accurately deseribe patterns of arrival and service time.

As a recommended class activity, attempt to model arrival times at local businesses using
the methods that we have discussed. Another enrichment activity could include student teams to
model traffic patterns near the college. It would be a more difficult programming problem where
one has to consider the complex arrival-departure patterns at intersections. One could vary the
duration of red and green lights in the model to optimize traffic flow. Such considerations are
important to the profitability of shopping malls that require an optimally smooth flow of traffic.

b S
QUEUE SIMULATION
A Microcomputer Can Help You Manage Waiting Lines
by E. Hart Rasmussen [Byte, March, 1984]

When we wait at the supermarket checkout counter, are stuck in rush-hour traffic, or have
trouble getting a telephone call through, we are in a queue. Queue is another word for "waiting
line." If we could get a firm handle on how queues work, we would be able to manage them
better and perhaps even eliminate them.

Simple waiting lines can be analyzed mathematically, but most queueing situations are so

complex that they defy precise description. For these situations, a computer can help us.
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Specifically, we can use a computer to model and simulate a queueing situation so that we can
make predictions about it and learn how it behaves.

There are many sophisticated commercial queue-simulation programs available, but they
are expensive and for large computers only. In this article, I present an Applesoft BASIC
program that can simulate many queueing problems.

Know Your Ps and Qs (Probabilities and Queues)

My doctor's nurse knows that the average examination takes 17 minutes, so she schedules
three patients an hour, one every 20 minutes. At first glance, it looks as if I should never have to
wait for the doctor. In reality, he needs a sizeable waiting room. Why? Because examinations
may take more time than expected, and patients don't always arrive on time.

A queue formation occurs when a unit that seeks a service must wait because the service
facility is busy servicing another unit. To simulate a queue formation, we need to break it into its
basic components.

The basic components are: the arrival of units seeking service, the interval between
arrivals, the number of service facilities, and the rate at which the service facilities operate.
Figure 1 illustrates some basic ways in which service facilities or stations and units may be
combined.

We next need to make some assumptions about these components. For instance, we must
assume that the overall capacity of the service facility exceeds the overall demand. (In queue
terminology, we say that the mean service rate exceeds the mean arrival rate for a single
channel.) If we didn't assume this, our queue would theoretically grow to infinite size. We also

assume that the intervals between arrivals and service times are variable. To study the queue, we
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must be able to describe these patterns of arrivals and service times, even if they seem to be
unpredictable. Research has shown that the patterns of arrivals and service times often are
completely random and can be described with the Poisson distribution. The formula for the
Poisson distribution is shown in Figure 2. With this formula, we can easily program the random

element that we need in our simulation.
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Queue Component
Mean arrival rate
Mean service rate

Mean arrival interval

Mean service time

Number of stations

Utilization factor

Average length of queue

Average waiting time
in queue

Variable Equation
Theory Program One S Multiple S
X
H
A Al
A
1 St
H
S S% 1 S
U US(Z) A s
B B
L 0OA U2 ye X
1-U (S-1IS-U»?
1
s-1
2 Uy Uz
n=0 1! SH(1-UIS)
W, 01 L L
A A

Table 1: Queueing theory variables and equations. S! and n! are the factorial values of these

variables.
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QUEUE SIMULATION
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Figure 2: Probability distribution. Curve 1 shows the Poisson probability distribution. Curves 2
and 3 are arbitrary distributions that can replace the Poisson distribution.
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The Program

The flowchart in Figure 3 shows the logic of a program that simulates a multi-channel,
single-phase service problem. The Advance module provides the executive control that keeps
track of time and events; it passes control to the appropriate action module as successive events
are simulated. In the Arrival module, as one arrival occurs, the time for the next arrival is
calculated in accordance with the specified algorithm. The arriving unit then joins the queue if
all service stations are occupied, or it moves on to seize an available station. The Departure
module frees a station when the service is completed and terminates the simulation if the sample
size has been reached. Otherwise, it checks to see if any units are waiting in the queue and, if so,
lets a unit leave the waiting line. The Seize module seizes an available service station and
calculates the service time in accordance with the prescribed algorithns.

Listing 1 shows the Applesoft BASIC queue-simulation program. The listing is grouped
in sections that correspond to the flowchart in Figure 3. All variable names used in the program
are listed in Table 2.

I have defined the frequently used variables at the start of the program. I've dimensioned
the arrays to allow 10 service stations, but they can easily be changed to accommodate a larger
number. The opening screen and data input (lines 7000-7999) and the start of the simulation
(tines 8000-8799) are at the end of the program so the sections of the program that are executed
over and over can have the lowest possible line numbers.

The keyboard is used to input data. The only exception is the data for non-Poisson

distributions, which is input through DATA statements.
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The times for the first arrival and the departure times for any units in a service station are
calculated in lines 8000-8799. Depending upon the instructions given during data input, the
program uses either a Poisson distribution or a user-defined probability distribution. Arrival
intervals and service times can have different distributions, and the random-number generator is
used to calculate the randomly varied event intervals in accordance with the specified
distributions.

The Advance module determines the earliest event by first assuming that the event is an
arrival (line 2000) and then checking if any departure occurs earlier (lines 2100-2130). The
clock is then advanced to the earliest event (line 2300). Counters necessary to the calculation of

queue statistics are incremented (lines 2310-2420), and control passes to the appropriate event

module,
Output

Variable Description Input Printer _Screen
A Time advance
Al Mean arrival interval yes yes yes
A% Answer 1o yes/no question
AS(2) Station status at start ves yes
C% Sample size yes yes ves
CD% Number of arrivals with

no wait time yes yes
C1% Total number of arrivals yes yes
C2% Total number of departures
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CS%(Z)

D§

F

FA(a,2)

FS(b2)

IS

QO
Q1
Q2

QA
QL
QL%
QMY%

QT

Number of departure from
Station Z

Date of report yes

Simulation factor; a function
of random

Probability distribution of
arrival intervals

Probability distribution for
service intervals

Project identification ves

Switch for next event
(0 = arrival, 1 = departure)

Switch for type of probability
distributions

Percent of arrivals with
no wait time

Average wait time, all arrivals

Average wait time, arrivals
entering queue

Average length of queue

Length of queue at start yes
Length of queue

Maximum length of queue

Cumulative queue time
(e, SUM QL% « T)

Random number = RND(1)

Station number with earliest departure
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yes

yes

ves

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes
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S%
S%(Z)
S$(2)
ST(Z)
S

T

TA
TI(Z)
TS(Z)
US(Z)
X

Z

Number of service stations yes
Station status: 0 = open, | = used

Station status

Total time Station Z has been in use

Mean service time, all stations yes
Time, cumulative from start

Time for next arrival

Time for departure from Station Z

Average service time at Station Z

Percent of utilization of Station Z

(General counter

Counter for stations

Table 2: Queue simulation variables.

of the next arrival (lines 3050-3130). If no station is open, the queue length is incremented by
line 3230 and the program checks fo see if the new queue length exceeds the previous maximum

(lines 3240).

4050), and checks to see if the sample size has been reached (line 4100). If the simulation has

not been completed, a unit waiting in the queue (if any) is allowed to seize the free station. The

yes

yes

ves

yes

yes

ves

yes

yes

yes

ves

yes

yes

The Arrival module counts the total number of arrivals (line 3000) and calculates the time

The Departure module frees the station (line 4000), increments counters (lines 4010-

Seize module sets the key that indicates a particular station is in use (line 4250) and then

calculates the departure time from that station (lines 4300-4430).
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When the sample size has been reached, the program leaves the simulation loop at line
4100 and passes to the section that calculates the statistics for the simulation (lines 3000-5199).
After the calculations are completed, the user is given a choice (lines 5200-5399) of sending
output to the screen or to a printer. If screen output (lines 5700-5999) is chosen, the user gets a
second opportunity to get a printed report (lines 5400-5699). If any non-Poisson distributions
have been used, that fact and the parameters for the distribution(s) are recorded on the report
(lines 6500-6999). When the printing is completed, control is passed back to screen output (line
5690) and the user is given an opportunity to run additional simulations without restarting the
program (lines 6000-6499).

The program length is about 7000 characters; it uses a total of about 8200 bytes of
memory during execution. The run-time depends somewhat on the type of probability
distribution (it runs faster when the formularized Poisson distribution is used). On my Franklin
1000, one simulation takes from 0.33 to 0.47 seconds, which means that a 2000 sample
simulation takes 10 to 15 minutes,

User-Defined Probability Distributions

The program can evaluate queueing situations with unique, user-defined probability
distributions. The arrival intervals and service intervals can have different distributions,
independent of each other. The choice of the type of distribution to be used is made from the
keyboard in lines 7200-7599. The program logic can most easily be explained by Table 3, which
lists the values that the key P assumes for the various possible combinations.

Figure 2 shows the shape of the Poisson distribution curve (curve 1) and two arbitrary,
user-defined curves. The distribution of curve 2 was used in the simulation reported in parts e

and f'of Figure 4. The user must input this non-standard distribution via DATA statements
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starting at line 9000. The DATA statements provide the coordinates for the line segments that
represent the special distribution. As an example, the distribution shown as curve 3 should be
input as follows:

9000DATAG,.25,.1,.25,.35,.5,.65,1.5,.9,1.75,1,1.75

Arrival Interval Service Interval Value of P
Poisson Poisson 1
Poisson Non-Poisson 2
Non-Poisson Poisson 3
Non-Poisson Same Non-Poisson 4

function as in Arrival
Interval column

Non-Poisson Different Non-Poisson 5
function than in Arrival

Interval column

Table 3: P values.

If arrival and service intervals have identical, non-Poisson distributions, we define the
interval only once. If they have different, non-Poisson distributions, the definition of the arrival
interval distribution precedes the definition of the service time distribution. For example,

9000DATAQ,.25,.1,.25,.35,.5,.65,1.5,.9,1.75,1,1.75
9010DATAO0,.75,1,1.25
assigns a distribution according to curve 3 to arrival intervals but distributes service times

according fo curve 2. Make sure that the defined distribution has an average value of 1.
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Some Sample Programs

Parts a through f of Figure 4 show examples of printed output from simulations done by
the program. Notice that all input data is repeated on the printed report. Parts e and f of the
figure show simulations using non-Poisson distributions. This is noted at the bottom of the
report; and the coordinates for the specified distribution curve(s) are shown, Part ¢ of the figure
shows a simulation of three parallel service stations. Notice that station 1 has been used most
often. This is because of the way the program chooses open stations. The average utilization
factor of 91.6 percent for all three stations is close .to the theoretical, overall utilization factor of
90.9 percent.

The results of the simulation are summarized in Table 4 and compared with the
theoretical values (where this is possible), which can be calculated using the formulas listed in
Table 1. Notice that even with 5000 simulations there is up to 20 percent difference between the
analytical and the simulated results. This does not indicate any flaw in the program but merely
illustrates the possible differences between a finite and an infinite population.

A comparison of lines 1, 2, and 3 in Table 4 shows that multiple service channels with
identical total capacity provide slightly improved service as more channels are used. A
comparison of lines 1 and 4 shows the dramatic reduction in queue length and waiting time when

a second service line is opened. (I hope the manager of my local supermarket reads this.)
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Figure 4: Simulation results with (4a) one service station, (4b) two service stations, (4c) three
service stations, (4d) doubled service capacity, (4¢) service time has probability function from
curve 2 of Figure 2, and (4f) both service and arrival times have probability function from curve
2 of Figure 2,

(4a)

1 (ONE) QUEUE SERVED BY ! PARALLEL SERVICE STATIONS

AVERAGE ARRIVAL INTERVAL WAS SPECIFIED AS 11 TIME UNITS

AVERAGE SERVICE TIME WAS SPECIFIED AS 10 TIME UNITS
QUEUE LENGTH AT START OF SIMULATION WAS 8

STATUS OF SERVICE STATIONS AT START WAS:
STATION STATUS
I USED
SAMPLE SIZE IS 5000 DEPARTURES
TIME ELAPSED FOR SIMULATION IS 55470 TIME UNITS
STATUS OF SERVICE STATIONS AT END IS:

STATION  NUMBEROF  UTILIZATION  AVERAGE TIME

DEPARTURES %o PER SERVICE
1 5000 91.98 10.2
QUEUE CONTENT ENTRIES
CURRENT MAXIMUM AVERAGE TOTAL ZEROES
36 46 10.81 5027 370
AVERAGE WAIT TIME AVERAGE WAIT TIME
ALL ENTRIES UNITS ENTERING QUEUE
119.25 128.73
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STATUS

OPEN

ZERO

%

7.36



(4b)

1 (ONE) QUEUE SERVED BY 2 PARALLEL SERVICE STATIONS

AVERAGE ARRIVAL INTERVAL WAS SPECIFIED AS 11 TIME UNITS

AVERAGE SERVICE TIME WAS SPECIFIED AS 20 TIME UNITS
QUEUE LENGTH AT START OF SIMULATION WAS 8§

STATUS OF SERVICE STATIONS AT START WAS:

STATION STATUS
1 USED
USED

SAMPLE SIZE IS 5000 DEPARTURES
TIME ELAPSED FOR SIMULATION IS 55025 TIME UNITS
STATUS OF SERVICE STATIONS AT END IS:

STATION  NUMBER OF UTILIZATION AVERAGE TIME

DEPARTURES % PER SERVICE
I 2531 92.05 20.01
2 2469 88.93 19.82
QUEUE CONTENT ENTRIES
CURRENT MAXIMUM AVERAGE TOTAIL ZEROES
2 38 712 4993 718
AVERAGE WAIT TIME AVERAGE WAIT TIME
ALL ENTRIES UNITS ENTERING QUEUE
78.42 91.59
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STATUS

OPEN

USED

ZERO
%

14.38



(4c)

1 {(ONE) QUEUE SERVED BY 3 PARALLEL SERVICE STATIONS

AVERAGE ARRIVAL INTERVAL WAS SPECIFIED AS 11 TIME UNITS

AVERAGE SERVICE TIME WAS SPECIFIED AS 30 TIME UNITS
QUEUE LENGTH AT START OF SIMULATION WAS 0

STATUS OF SERVICE STATIONS AT START WAS:

STATION STATUS
1 USED
2 USED
3 OPEN

SAMPLE SIZE IS 5000 DEPARTURES

TIME ELAPSED FOR SIMULATION IS 55615 TIME UNITS

STATUS OF SERVICE STATIONS AT END IS:

STATION ~ NUMBER OF  UTILIZATION  AVERAGE TIME

DEPARTURES % PER SERVICE

1 1709 93.90 30.56

2 1646 91.71 30.99

3 1645 89.11 30.13

QUEUE CONTENT ENTRIES

CURRENT MAXIMUM AVERAGE TOTAL ZEROES

0 33 6.06 4998 774
AVERAGE WAIT TIME AVERAGE WAIT TIME

ALL ENTRIES UNITS ENTERING QUEUE

67.47 79.83

STATUS

OPEN
OPEN
OPEN

ZERO
%

15.49



(4d)

1 (ONE) QUEUE SERVED BY 2 PARALLEL SERVICE STATIONS

AVERAGE ARRIVAL INTERVAL WAS SPECIFIED AS 11 TIME UNITS

AVERAGE SERVICE TIME WAS SPECIFIED AS 10 TIME UNITS
QUEUE LENGTH AT START OF SIMULATION WAS 0

STATUS OF SERVICE STATIONS AT START WAS:

STATION STATUS
i USED
OPEN

SAMPLE SIZE IS 5000 DEPARTURES

TIME ELAPSED FOR SIMULATION IS 55796 TIME UNITS

STATUS OF SERVICE STATIONS AT END IS:

STATION  NUMBER OF  UTILIZATION AVERAGE TIME

DEPARTURES % PER SERVICE
1 2973 54.60 10.25
2 2027 36.27 6.98
QUEUE CONTENT ENTRIES

CURRENT MAXIMUM AVERAGE TOTAL ZEROES

0 9 24 5600 3556
AVERAGE WAIT TIME AVERAGE WAIT TIME

ALL ENTRIES UNITS ENTERING QUEUE

2.72 9.42
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STATUS

USED
OPEN

ZERO
%

71.12



{4e)

1 (ONE) QUEUE SERVED BY 1 PARALLEL SERVICE STATIONS
AVERAGE ARRIVAL INTERVAL WAS SPECIFIED AS 11 TIME UNITS
AVERAGE SERVICE TIME WAS SPECIFIED AS 10 TIME UNITS
QUEUE LENGTH AT START OF SIMULATION WAS 5
STATUS OF SERVICE STATIONS AT START WAS:

STATION STATUS

1 USED

SAMPLE SIZE IS 5000 DEPARTURES
TIME ELAPSED FOR SIMULATION IS 55556 TIME UNITS
STATUS OF SERVICE STATIONS AT END IS:

STATION  NUMBER OF UTILIZATION AVERAGE TIME  STATUS

DEPARTURES Yo PER SERVICE
1 5000 89.66 9.96 OPEN
QUEUE CONTENT ENTRIES ZERO

CURRENT MAXIMUM AVERAGE TOTAL ZEROES %

I 24 3.11 4995 533 10.67
AVERAGE WAIT TIME AVERAGE WAIT TIME

ALL ENTRIES UNITS ENTERING QUEUE

34.59 38.72

NOTE:
SERVICE TIME HAD PROBABILITY DISTRIBUTION:

0 75 1 1.25
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(4h

1 (ONE) QUEUE SERVED BY 1 PARALLEL SERVICE STATIONS
AVERAGE ARRIVAL INTERVAL WAS SPECIFIED AS 11 TIME UNITS
AVERAGE SERVICE TIME WAS SPECIFIED AS 10 TIME UNITS
QUEUE LENGTH AT START OF SIMULATION WAS 0
STATUS OF SERVICE STATIONS AT START WAS:

STATION STATUS

I OPEN

SAMPLE SIZE IS 5000 DEPARTURES
TIME ELAPSED FOR SIMULATION IS 55109 TIME UNITS
STATUS OF SERVICE STATIONS AT ENDTS:

STATION  NUMBER OF UTILIZATION AVERAGE TIME STATUS

DEPARTURES % PER SERVICE
1 5000 90.64 9.99 OPEN
QUEUE CONTENT ENTRIES ZERO

CURRENT MAXIMUM AVERAGE TOTAL ZEROES %

I 2 A2 5001 2496 49.91
AVERAGE WAIT TIME AVERAGE WAIT TIME

ALL ENTRIES UNITS ENTERING QUEUE

1.34 2.67

NOTE:
ARRIVAL SERVICE HAD IDENTICAL NON-POISSON DISTRIBUTION;

0 75 1 1.25
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The significance of the probability distribution is clearly demonstrated by comparing

lines 1, 5, and 6. The average waiting time is reduced by 60 percent or more when the service

interval follows a narrow, linear distribution rather than the Poisson distribution, and waiting is

all but eliminated when both arrival and service intervals fall in a narrow range. This shows that

good scheduling reduces wasteful waiting time without having to change the service capacity.

Masn Interva!

Arrival | Gervice
11 10
11 20
11 a0
11 10
i3 100
112 10t

Parcerd of
Uiilization
Anaiptical | Simulated

80.9 g2.0
808 $0.5
§0.8 816
455 47.2
g0.8 Bo.Y
809 -TeX

Avarsge
Qusue Ltﬁmh
Anghtical | Simulatsd

- R 10.8
8.7 kA
8.3 R

24 ] L4
na. an
ns. A2

Averags
Waiting 'l_'iml
Ansiviical Simulats

$00.0 1183
85.2 78.4
21.8 61.5
26 27

e, 4.6
na. 1.3

Table 4: Analytical and simulated solutions of queue problems. The superscript | indicates that
the service interval has linear probability distribution. The superscript 2 indicates that both the
arrival and the service interval had linear probability distribution.
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Listing 1: A program, written in Applesoft BASIC, for queue simulation.

QUEUE SIMULATION
JLISTO0,1999 START

1000 DIM FA(25,2),FS(25,2), TD(10),S%(10),ST(10),CS%(10)
1010R=0:z=0:A=0:5% = 0:T = 0:QL% = 0:CI% = 0:C2% =0
1020 ONERR GOTO 8800

1100 GOTO 7000

JLIST2000,2999 ADVANCE MODULE

2000 A=TA-T:N=0

2100 FOR Z=110 8%

2110 IF S%(Z) = 0 THEN 2130

2120IF A>=TD(Z)- TTHEN A=TD(Z)-T:.N= 1:.S=Z
2130 NEXT

2300T+T+A

2310 QT+ QT + QL% * A

2400 FOR Z =110 5%

2410 1F S%(Z) =1 THEN ST(Z) = ST(Z) + A
2420 NEXT

2500 IF N = 1 THEN 4000

JLIST3000,3999 ARRIVAL MODULE

3000 C1% = C1% + 1

3050 IF P <3 THEN R = RND (1):F = - LOG (I - R):GOTO 3130
3100 R +RND (13:X =0

3110 IF R > FA(X,1) THEN X = X + 1:GOTO 3110

3120 F + FA(X - 1,2) + (R =FA(X - 1,1)) * (FA(X.2) - FA(X - 1,2)) (FA(X,1) - FA(X - 1,1)
3130 TA=T+F * Al

3200 FOR Z = 1 to $%

3210 IF $%(Z) = 0 THEN S = Z:C0% = CO% + 1" GOTO 4250
3220 NEXT

3230 QL% = QL% + 1

3240 TF QM% < QL% THEN QM% = QL%

3250 GOTO 2000
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JLIST4000,4249 DEPARTURE MODULE
4000 S%(S) =0

4010 CS%(S) = CS%(S) + 1

4050 C2% = C2% + 1

4100 TF C2% = > C% THEN 5000

4150 TF QL% = 0 THEN 2000

4200 QL% = QL% - 1

JLIST4250,4999 SEIZE MODULE

4250 S%(S)=1

4300 IF P =2 THEN 4400

4310 IF P = 4 THEN 4400

4320 TF P = 5 THEN 4400

4340 R +RND (1%:F =- LOG (I - R): GOTO 4430

4400 R +RND (1):X =0

4410 TFR > FS(X,1) THEN X =X + 1: GOTO 4430

4420 F+FS(X - 1,2) + (R - FS(X - 1,1) * (FS(X.,2) - FS(X - 1L,2WAFS(X,1) - FS(X - 1,1)
4430 TD(S)=T +F * SI

4600 GOTO 2000

JLISTS5000,5199 CALCULATE AVERAGES AND PERCENTAGES

5000 FOR Z = 1 to $%: IF CS%(Z) = 0 THEN 5030
5010 TS(Z) = INT (100 * ST(Z) / CS%(Z) +.5)/ 100
5020 US(Z)=INT (10000 * ST(Z)/ T +.5) / 100
5030 NEXT

5040 Q0 =INT (10000 * C0% / C1% + .5) / 100
5050 Q1 =INT (100 * QT /C1% +.5)/ 100

5060 IF C1% = C0% THEN Q2 = 0: GOTO 5080
5070 Q2 =INT (100 * QT / (C1% - C0%) +.5) / 100
5080 QA =INT (100 * QT /T +.5)/100

JLIST5200,5399 SELECT OUTPUT DEVICE

5200 HOME : PRINT CHRS$ (7): PRINT CHRS (7): VTAB (7)

5210 PRINT TAB ( 10)"'SIMULATION COMPLETED"

5220 PRINT : PRINT TAB ( 13)"READY TO REPORT"

5230 PRINT : PRINT TAB ( 11)"Shall Report Go To"

5240 PRINT : PRINT TAB ({ 7)"SCREEN (S) or PRINTER (P) ?"
5250 PRINT : PRINT TAB (19)" ";: GET AS

5260 IF A$ ="S" THEN 5700

5270 IF A% = "P" THEN 5400

5280 PRINT CHRS (7): PRINT " Please answer 'S' or 'P"; GOTO 5250
JLIST5400,5699 OUTPUT TO PRINTER
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5400 HOME : PRINT : INPUT "What is Date of Report? ";D$

5410 PRINT : PRINT "What is Project Identification?"

5420 PRINT : INPUT I$

5430 PRINT : PRINT "Press RETURN when PRINTER is ready ";: GET AS

5440 PR# 1

5450 PRINT : PRINT TAB ( 12)D$: PRINT

5460 PRINT TAB( 40 - LEN (1) / 2)I$

5470 PRINT TAB(32)"QUEUE SIMULATION"

5480 PRINT : PRINT : PRINT

5490 PRINT TAB( 12)"1 (ONE) QUEUE SERVED BY ";8%;" PARALLEL SERVICE
STATIONS

5500 PRINT TAB( 12)"AVERAGE ARRIVAL INTERVAL WAS SPECIFIED AS ";ATL"
TIME UNITS"

5510 PRINT TAB( 12)"AVERAGE SERVICE TIME WAS SPECIFIED AS ";SI."

TIME UNITS

5520 PRINT TAB( 12)"QUEUE LENGTH AT START OF SIMULATION WAS ";QL

5530 PRINT : PRINT TAB( 12)"STATUS OF SERVICE STATIONS AT START WAS:"

5540 PRINT : PRINT TAB(20)"STATION"; TAB( 36)"STATUS": PRINT

5550 FOR Z =1 to §%: IF AS$(Z) = "Y" THEN S$(Z) = "USED"

5560 IF A$(Z) <> "Y" THEN S$(Z) = "OPEN"

5570 PRINT TAB( 23)Z; TAB( 37)S$(Z): NEXT

5580 PRINT : PRINT TAB( 12)"SAMPLE SIZE IS ";C%;" DEPARTURES"

5590 PRINT : PRINT TAB( 12)"TIME ELAPSED FOR SIMULATION IS ";

INT (T +.5)" TIME UNITS"

5600 PRINT : PRINT TAB( 12)"'STATUS OF SERVICE STATIONS AT END IS:":
PRINT : PRINT TAB( 12)"STATION NUMBER OF UTILIZATION AVERAGE
TIME STATUS"

5610 PRINT TAB( 12)"  DEPARTURES % PER SERVICE": PRINT

5615 FOR Z =1 to 8%: IF S%(Z)=0 THEN S$%$(Z) = "OPEN"

5620 IF S%(Z) = 1 THEN S$(Z) = "USED"

5625 PRINT TAB( 15)Z; TAB( 24)CS%(Z); TAB( 35)US(Z); TAB( 49)TS(Z);

TAB( 22)S$(Z): NEXT

5630 PRINT : PRINT : PRINT TAB( 18)"QUEUE CONTENT"; TAB( 42) "ENTRIES ZERO"

5640 PRINT TAB( 12)"CURRENT MAXIMUM AVERAGE"; TAB( 40)"TOTAL ZEROS %"

5650 PRINT TAB( 15)QL%;TAB( 24)QM%,; TAB( 32)QA; TAB(41)C1%; TAB( 8)C0%:;
TAB( 15)Q0

5660 PRINT : PRINT TAB( 12)"AVERAGE WAIT TIME"; TAB( 42)"AVERAGE WAIT
TIME": PRINT TAB( 15)"ALL ENTRIES; TAB( 40)"UNITS ENTERING QUEUE"

5670 PRINT TAB( 18)Q1; TAB(48)(Q2

5680 IF P> 1 THEN 6500

5690 PR# ). GOTO 6000
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JLIST5700,5999 OUTPUT TO SCREEN

5700 HOME : PRINT

5710 PRINT " QUEUE SIMULATION"

3720 PRINT: PRINT TAB( 2)"MEAN ARRV T"; TAB( 15)Al; TAB( 24)"MEAN
SERV T"; TAB( 36) SI

5730 PRINT TAB( 2)"QUEUE START"; TAB( 15)QL; TAB( 24)"STATIONS"; TAB( 36) SI

5740 PRINT TAB( 2)"SAMPLE SIZE"; TAB( 15)C%; TAB(24)"TOT TIME"; TAB( 35)
INT (T +.5)

5750 PRINT : PRINT " STAT DEPART UTILIZ AVG TIME STATUS": PRINT

5760 FOR Z=1TO 8%

5770 IF S%(Z) = 0 THEN S$(Z) = "OPEN"

5780 IF 8%(Z) =1 THEN S$(Z) = "USED"

5790 PRINT TAB( 4)Z; TAB( 9)CS%(Z); TAB( 17)US(Z);, TAB( 25) TS(Z); TAB( 35)S$(Z)

5800 NEXT

5810 PRINT : PRINT" QUEUE CONTENT ENTRIES %"

5820 PRINT " CURR MAXI AVERAGE TOTAL ZEROES ZERO"

5830 PRINT TAB( 2)QL%; TAB( 8)QM%; TAB( 14)QA; TAB( 23)C1%; TAB( 29)C0%;
TAB(35) Q0

5840 PRINT TAB( 2)"AVG WAIT A", TAB( 13)Q1; TAB( 22)"AVG WAIT Z"; TAB( 35)Q0

3850 PRINT : PRINT "Do you want printed copy? Then press 'Y

5860 PRINT "Otherwise press RETURN when ready ";: GET AS

5870 TF A% ="Y" THEN 35400

JLIST6000,6499 SELECT MODE SIMULATIONS OR END

6000 HOME : PRINT : PRINT

6010 PRINT "Want to do another simulation (Y/N) ?"

6020 PRINT : PRINT TAB( 19)" ";: GET AS

6030 IF A$ +"Y" THEN CLEAR : DIM FA(25,2),FS(25,2): RESTORE : GOTO 7300
6040 IF A$ = "N" THEN END

6050 PRINT : PRINT CHRS (7): PRINT "Please answer 'Y' or N'"; GOTO 6020

JLIST 6500,6999 AUXILIARY PRINTER OUTPUT

6500 PRINT : PRINT : PRINT TAB( 12)"NOTE:"

6510 ON P GOTO 5690,6520,6550,6580,6610

6520 PRINT TAB( 12)"SERVICE TIME HAD PROBABILITY DISTRIBUTION:": PRINT

6530 GOSUB 6750

6540 PRINT : GOTO 5690

6550 PRINT TAB( 12)"ARRIVAL TIME HAD PROBABILITY DISTRIBUTION:": PRINT

6560 GOSUB 6700

6570 PRINT : GOTO 5690

6580 PRINT TAB( 12)"ARRIVAL AND SERVICE HAD IDENTICAL NON-POISSON
DISTRIBUTION:": PRINT

328



6590 GOSUB 6700

6600 PRINT : GOTO 5690

6610 PRINT TAB( 12)"ARRIVAL TIME HAD PROBABILITY DISTRIBUTION:": PRINT
6620 GOSUB 6700

6630 PRINT : PRINT

6640 PRINT TAB( 12)"SERVICE TIME HAD PROBABILITY DISTRIBUTION:": PRINT
6650 GOSUB 6750

6660 PRINT : GOTO 5690

6700 X =0

6710 PRINT TAB( 12)FA(X,1);" FA(X.2);" "

6720 IF FA(X,1) = 1 THEN RETURN

6730 X=X+ 1: GOTO 6710

6750 X =0

6760 PRINT TAB( 12)FS(X.1);" ":FS(X,2);" ";

6770 1F FS(X,1) = 1 THEN RETURN

6780 X =X + 1: GOTO 6760

JLIST7000,7199 OPENING SCREEN

7000 HOME
7010 PRINT : PRINT : PRINT : PRINT

7020 PRINT" s s o sk ok ok ol sl e ok sl ok Ak ol ok ol ok e el o e s ok sl g ke R 1t

7030 PRINT" * 1
7040 PRINT" *  QUEUE SIMULATION "
7050 PRINT " * A
7060 PRINT " * BY !
7070 PRINT" * !
7080 PRINT" *  E.HART RASMUSSEN  *"
7090 PRINT " * PMS e
7100 PRINT" * !

71 10 PRINT" Aot ool el e ek sk ck sk sk e sk ek sk

7120 PRINT : PRINT : PRINT
7130 PRINT" Press RETURN io start"
7140 PRINT : PRINT TAB( 19): GET AS

JLIST7200,7599 ESTABLISH PROBABILITY DISTRIBUTION

7200 HOME

7210 PRINT " Shall ARRIVAL and SERVICE have"

7220 PRINT : PRINT " identical distributions (Y/N) ";: INPUT A%

7230 IF AS ="Y" THEN P = 1. GOTO 7260

7240 IF AS ="N"THEN P = 2: GOTO 7300

7250 PRINT CHRS (7): PRINT " Please answer 'Y' or 'N'  ";: INPUT A$: GOTO 7230
7260 PRINT : PRINT " Are they both Poisson ";: INPUT A$

7270 IF AS ="Y" THEN 7600
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7280 IF A$ = "N" THEN P = 4: GOTO 7400

7290 PRINT CHRS$ (7): PRINT " Please answer 'Y' or N' ";: INPUT A$: GOTO 7270
7300 PRINT : PRINT " Does ARRIVAL have Poisson ";: INPUT A$

7310 1IF AS$ ="Y" THEN 7400

7320 TF A$ ="N" THEN P = 3. GOTO 7360

7330 PRINT CHRS (7): PRINT " Please answer "Y' or 'N' ";: INPUT AS: GOTO 7310
7360 PRINT : PRINT " Does SERVICE have Poisson ";: INPUT A$

7370 IF A$ ="Y" THEN 7400

7380 IF A$ ="N" THEN P = 5: GOTO 7400

7390 PRINT CHRS (7): PRINT " Please answer 'Y' or 'N';: INPUT A$: GOTO 7370
7400 ON P GOTO 7600,7410,7420,7430,7440

7410 GOSUB 7550: GOTO 7600

7420 GOSUB 7500: GOTO 7600

7430 GOSUB 7500: RESTORE : GOSUB 7550: GOTO 7600

7440 GOSUB 7500: GOSUB 7550: GOTO 7600

7500 X =-1

7510 X + X+ 1: READ FA(X,1),FA(X.2)

7520 IF FA(X,1) < 1 THEN 7510

7530 RETURN

7550 X=-1

7560 X =X + 1: READ FS(X,1),FS(X,2)

7570 TF FS(X,1) < 1 THEN 7560

7580 RETURN

1LIST7600,7999 INPUT SIMULATION DATA

7600 HOME : PRINT

7610 PRINT : INPUT "What is AVERAGE Arrival Intervals? ™Al

7620 PRINT : INPUT "What is AVERAGE Service Time? ";SI

7630 PRINT : INPUT "How many Service Stations are used? ";S%

7640 PRINT " PRINT "Is there a waiting Queue at Start? ";: INPUT AS$

7650 IF A$ ="N" THEN PRINT : GOTO 7680

7660 IF A$ <>"Y" THEN PRINT CHRS (7): PRINT "Please answer 'Y or N' ";:
INPUT AS$: GOTO 7650

7670 PRINT : INPUT "How many are waiting? ";QL%:QL = QL%:QM% = QL%: PRINT

7680 PRINT "Are any Service Stations in Use ";; INPUT A$

7690 IF A$ ="N" THEN 7900

7700 IF AS <> "Y" THEN PRINT CHRS (7): PRINT "Please answer 'Y' or N'";:
INPUT A$: GOTO 7690

7710 1IF 8% =1 THEN AS$(1) ="Y": GOTO 7960

7720 PRINT : PRINT " Service Station # In Use (Y/N)": PRINT

7730 FOR X =110 5%

7740 PRINT " " X;: INPUT "AS(X)

7750 NEXT

7900 PRINT ; PRINT : INPUT "Size of Simulation Sample: ";C%
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JLIST8000,8799 CALCULATE FIRST ARRIVAL AND DEPARTURE(S) TIMES

8000 HOME : PRINT : PRINT : PRINT : PRINT : PRINT TAB( 15) "PLEASE WAIT"
8010 PRINT : PRINT TAB( 10)" ";: FLASH : PRINT "SIMULATION RUNNING"

8020 NORMAL

8090 IF P <3 THEN R = RND (1):F = - LOG (1 - R): GOTO 8130

8100 R+RND (1):X = 0

8110 IF R > FA(X,1) THEN X = X + [; GOTO 8110

8120 F + FA(X - 1,2) + (R - FA(X - 1,1)) * (FA(X.2) - FA(X - 1,2))/ (FA(X.1) - FA(X - 1,1))
8130 TA=F * Al

8150 FOR Z=1to $%

8160 IF A$(Z) = "Y" THEN S%(Z) = 1

8170 IF S%(Z) = 0 THEN TD(Z) = §% * 100 + Al: GOTO 8300

8180 IF P =4 THEN 8240

8190 IF P =5 THEN 8240

8200 R +RND (1):;F = - LOG (1 - R): GOTO 8270

8240 R+RND (1):X =0

8250 TF R > FS(X,1) THEN X = X + 1: GOTO 8250

8260 F=FS(X - 1,2) + (R - FS(X - 1,1)) * (FS(X.2) - FS(X - 1,2)) / (ES(X,1) - FS(X - 1,1))
8270 TD(Z)=F * SI

8300 NEXT

8500 GOTO 2000

JLIST8800, ERRORS IN DATA STATEMENTS

8800 HOME : PRINT : PRINT

8810 FOR X =1 TO 3: PRINT CHRS (7): NEXT

8820 PRINT "PLEASE CORRECT THE DATA STATEMENTS”

8830 PRINT : PRINT : PRINT : PRINT " NON-POISSON DISTRIBUTIONS"
8840 PRINT : PRINT " SHOULD BE IN DATA STATEMENTS"

8850 PRINT : PRINT"  STARTING AT LINE 9000"

8860 PRINT : LIST 9000,

8870 END
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