CHAPTER EIGHT

TWO INTERNATIONAL MATHEMATICAL MODELING QUESTIONS
WITH EXEMPLARY SOLUTIONS

These materials have been made available to the NSF Advisory Council, NSF liaison
officers, and pilot project participants by the generosity of COMAP (Dr. Sol Garfunkel).

Two Snow Plow Problem

The solid lines on the map represent paved, two-lane roads in a snow-removal district in
Wicomico County. The broken lines are state highways. After a snow fall, two plow-trucks
were dispatched from a garage that is about 4 miles west of each of two points (*) marked on the
map. Find an efficient way to use two trucks to sweep snow from the county roads, The trucks
may use the state highways to access the county roads.

Assume that the trucks neither break down nor get stuck and that the road intersections
require no special plowing technigues.

Before you read the Outstanding (Best in World) solution to the Snow Plow Problem,
review the topics of Graph, Tree, Directed Graph, Cycle, Euler Circuit, and Undirected Tree,

covered in standard texts of Discrete Mathematics.
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OUTSTANDING SOLUTIONS
A REAL SNOW JOB
Joel E. Atkins
Jeffrey S. Dierckman
Kevin O'Bryant

Rose-Hulman Institute of Technology, Terre Haute, IN 47803
Advisor: A. W, Schurle

SUMMARY

We were asked to design optimal routes for two plow-trucks to clear the county roads in a
snow removal district of Wicomico County, MD. We felt that an optimal route would minimize
the time spent driving over already-plowed roads and highways. We also felt that an optimal
route would end where it had started.

Drawing analogies to graph theory, we found a subgraph, which was a tree, of the graph
representation of the snow-removal district. Traversing this tree in preorder yielded an Euler
circuit. This led us to a route where neither plow-truck ever drove over highways or county
roads that had already been cleared. This route also enabled both plow-trucks to finish where
they started. Theretore, this route satisfies our definition of an optimal route.

The model we present has several strengths, First, it produces an optimal route for the
two plow-trucks. Second, it is easily adaptable to changes in the snow-removal district. Third, it
is easy to compensate for changes in the relative capabilities of the plow-trucks or the number of

the plow-trucks. Lastly, it provides a simple algorithm for the plow-truck drivers to follow:

ASSUMPTIONS
1. Plow-trucks do not break down or get stuck.
2. Neither intersections nor dead ends require special snow removal techniques.
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3. Plow-trucks travel in the right lane of the road.

4. The plow-trucks enter the district on the roads directly east of the starred [ocations on the
map.

5. Snowfall is uniform throughout the district.

6. Both plow-trucks are identical in their snow-removal capabilities.

7. Both plow-trucks travel at the same speed.

8. A plow-truck plows exactly one lane at a time.

JUSTIFICATION OF ASSUMPTIONS

I The problem statement says that plow-trucks do not break down or get stuck.

2. The problem statement also says that intersections do not require special plowing
techniques. lt seems reasonable to include dead ends in this assumption, because
there will be no traffic at the ends of roads.

3. Plow-trucks must obey traffic laws.

4. Since the plow-trucks begin 4 mi west of the starred locations on the map, off the map,
we assume that the plow-trucks can reach the district in the shortest time on Dagsboro
Road and Ocean City Road.

3. Because of the small size (approximately 5.6 mi by 12.9 mi) of the snow-removal
district and the relatively large size of weather fronts, we assume that snowfall is
uniform throughout the district,

6. Since the problem states nothing about the relative capabilities of the plow-trucks, we
had to make some assumptions. We assume equality to simplify the exposition of the
model; however, the model can easily compensate for differences in the capabilities

of the plow-trucks.

335



7. In at least one state, all county roads have the same speed limit. There is nothing
on the map which would indicate that this is not the case in Wicomico County.
Therefore, assume that any plow-truck in the district will be able to travel at that
maximum speed unless excessive snow makes this impossible. If there is excessive
snow, it will affect all plow-trucks in the district in the same way, because we assume
uniform snowfall (assumption (5) above).

8. It is unreasonable 1o assume that a plow-truck would plow less than one lane, because
to do so would require the plow-truck to traverse each road more than twice. It would be
unsafe for a plow-truck to plow more than one lane at a time, because doing this would
be hazardous to oncoming traffic. We assume, therefore, that a plow-truck plows exactly
one lane at a time,

ANALYSIS AND DESIGN OF THE MODEL

The problem is to find the most efficient way for the two plow-trucks to clear the county
roads. Our model measures the efficiency by the amount of snow that the plow-trucks are able to
clear in a given period of time spent in the district. This time is affected only by the speed of the
plow-trucks and the amount of time spent clearing county roads that have not yet been plowed.
Thus, plow-trucks driving on highways and county roads that have already been cleared would
reduce efficiency. Since the model cannot affect the speed of the plow-trucks, efficiency will be
maximized when the ratio of time spent clearing county roads in the district to the total time
spent in the snow-removal district is maximized. Therefore, the best possible result, which this
model obtains, is for both plow-trucks to spend all of their time clearing roads now previously

plowed.
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In keeping with the desire to spend as much time as possible clearing new roads, we
decided that turning around is preferable to driving on highways or already-cleared roads. It is
beneficial to end the route where we enter the district, for two reasons. Primarily, it may be
necessary to redo the route if snow has continued to fall. If not, the plow-trucks will need to
return to their garage 4 mi west of the starred locations on the map.

Our model requires that the snow-removal district be divided into two areas, with one
plow-truck assigned to each area. To accomplish this, the roads should be divided so that each
plow-truck will have the same number of miles of roads to clear. The alternative, one plow-truck
finishing before the other, requires more time to clear the entire district. Furthermore, both areas
should be connected. If not, the plow-truck assigned to an area would need to travel on roads
that the other plow-truck would be clearing anyway.,

To split the district evenly, we measured the distances of all the county road segments.
We enlarged the provided map with a photocopier and scaled distances from the enlargement,
Our method was to conform a pliable string to the shape of the map road segment; the length of
the string when taut determined the map length of the road segment. The map length was then
scaled to give the length of the road segment. Having determined the lengths of all county road
segments, we then split the district into two connected areas, with one having 0.06 more miles of
county roads than the other (see Figure 1), a negligible difference compared to the 125.29 total
miles of roads.

The problem is now reduced to finding an optimal route for each plow-truck to cover its
area of the district. To solve this problem, it was helpful to view the map in the context of graph
theory. Each area was represented by a directed graph, with each intersection and dead end a

vertex, and each lane an edge. Both graphs are connected, since the roads in the snow district
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Figure 1. The snow-removal district split into northern and southern areas.

connected and each of the areas are connected. An optimal route for a plow-truck becomes an
Euler circuit for the graph of that plow-truck's area.

If one of the graphs, A, has a tree structure, finding an Euler circuit would be simple.
The associated undirected graph of A would be a rooted tree, G. A simple Euler circuit for A
could then be obtained by following the preorder traversal [Grimaldi 1989, 487] of G and then

returning to the root of G.
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If Ais not a tree graph, it has a subgraph that includes all the vertices of A and is a
directed tree graph. To find a subgraph, 8, of this form, one edge is eliminated from each loop
until no loops remain, Since only edges from loops have been removed, S will still be

connected; therefore, S is a tree. Figure 2 shows an example of a graph A and such a subgraph

S.
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Figure 2a. A graph A

Figure 2b. A subgraph S of A that includes all the vertices of A and is a tree.

Let T be the undirected tree associated with S. For example, the graph in Figure 3a is the
undirected tree associated with Figure 2b. The preorder traversal of Figure 3ais [, F, G, H, E, A,

B, C, and D. The reader should note, for example, that to travel from I to F, it is necessary to

pass through D, E, H, and G,
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Let T' denote the pseudotree formed by adding to T edges that were in A but not in S.
These edges will be added such that they are branches only of the first of their vertices to appear
in the preorder. It is also necessary to require that these new edges be added only to original
vertices of T. To finish constructing T', each edge is made into two directed edges between the

two vertices, so that T' will be a directed graph. Figure 3b shows the directed pseudotree for

Figure 3a.
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Figure 3a. An undirected tree T associated with the tree-subgraph S of Figure 2b, with preorder
traversal indicated.

Figure 3b. A directed pseudotree T' for the undirected tree T of Figure 3a, formed by adding

edges that were in A but not in S; the numerals denote the preorder traversal that extends
the preorder traversal of T.

340



T' may be traversed by following the preorder of T and agreeing that any edge in T"
connecting vertices that are not connected in T will be traversed at the first opportunity, to be

followed immediately by returning on the other edge connecting those two vertices (see Figure

4),
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Figure 4. An Euler circuit for A, based on the traversal of T' in Figure 3b.

Call this completed circuit P. Thus P is also an Euler circuit for A, because there is a
one-to-one correspondence between the edges in A and the edges in T'. Thus every edge in A is
traversed the one time it is traversed in T' by following P.

APPLYING THE MODEL AND ANALYZING ERRORS

Applying the method presented above to the map given in the problem statement, we find

optimal paths for the two areas shown in Figure 1. The roads that will not be in T are removed
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from the maps in Figure Sa and 5b, which show subgraphs (which are trees) of the northern and

southern areas.

Figure 5. Tree-subgraphs for the northern and southern areas, with roads removed that will not

be in the pseudotrees for the areas.

In Figure 6, these roads have been returned, but as dead ends. The optimal paths for the

two areas are then obtained by traversing these maps in preorder. The precise paths are shown in

an Appendix. [Editor's Note: Omitted for space reasons.]
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Fig. 6. Subgraphs for the northern and southern areas, with roads not in their pseudotrees
reincluded as dead ends.

Now that optimal paths are known, they can be implemented. It is an important
requirement for the model that the two areas take the same amount of time to complete.
Unfortunately, there are a number of reasons why this might not be the case:

. Minimal Error. The scaling increments on the measuring device were equivalent to 0.04

mi. Therefore, 0.02 mi would be the minimal error on any measurement.



e Eyrors in Measuring Roads. The map length of the road was approximated with pliable
string. This string was then measured with the measuring device, as was the scale of the
enlargement. The inaccuracies involved make it doubtful that the minimal error was achieved.

® Turning Around. The plow-truck for the southern area will have to turn around 47 times,
while that for the northern area will have to turn around 35 times. While this difference does not
seem significant when compared to the total distance that the two plow-trucks will be driving, it
will make some difference.

. 0.06 Miles. The northern area has 0.06 mi more of roads.

None of these errors represent significant flaws in this model. To a large extent, these
errors are random; therefore, the errors in the northern area are expected to be roughly equal to
the errors in the southern area. Thus a cancellation effect may occur, and we can expect both
areas to include nearly the same length of roads.

What errors remain can be eliminated in the following way. The first time this model is
implemented, the difference in the time to complete the two areas can be found. If this
difference is significant, it can be compensated for by transferring roads, or parts of roads, from
the route taking longer to complete to the other route. As long as this is done so that both routes
remain connected, it will be possible to use the algorithm above to produce two new optimal
routes.

STRENGTHS OF MODEL

A good model can easily accommodate many variations of the original problem. Our
model can handle a great variety of changes in the problem, including plow-trucks with different

capabilities, different numbers of plow-trucks, even different maps.
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To compensate for plow-trucks with differing capabilities, the boundaries between the
areas can be moved fo give more powerful or faster plow-trucks more road.

I Wicomico County decided to assign a different number of plow-trucks to this snow-
removal district, the district should be divided into that number of connected areas. Each area
should be assigned a plow-truck of appropriate size and contain a road providing quick access to
its garage. Then the entire district will be cleared promptly, because the plow-trucks will finish
at approximately the same time.

Our model can be applied to a different road system as well. The method, of dividing the
system into areas for each plow-truck and using trees to find optimal paths through each area,
can be applied equally well to any set of connected roads.

Furthermore, the model has several inherent strengths that arise from the underlying graph-
theoretic structure. The drivers can follow simple instructions to complete optimal paths
covering their routes; the plow-trucks finish their routes near their respective garages; a
minimum amount of fuel is used, as there is no unnecessary driving.

DRIVER'S INSTRUCTIONS

The following instructions can be given to a driver who has a limited knowledge of the
area:
1. Stay in your assigned area.
2. Always drive on lanes that have not been plowed.
3. If you come to an intersection that has already been plowed and the road behind you has
had only one lane plowed, turn around and plow the other lane.
4. If it was not necessary to turn around and one or more completely unclear roads meeting

at the intersection, turn onto the rightmost of these.
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5. Otherwise, plow the rightmost road that does not have a plowed right lane.

These instructions are equivalent to traversing a pseudotree in preorder, since the driver
will treat one edge of any loop as an edge unique to the pseudotree, by turning around at the end
of the road representing that edge and then clearing the other lane of that road.

REFERENCE

Grimaldi, Ralph. 1989. Discrete and Cominatorial Mathematics: An Applied Introduction.
New York: Addison-Wesley.
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Let us move on to an exemplary math team paper in Biological Classification. Before you
peruse the paper, please review Discriminant Analysis in SPSS (Advanced Student Guide,
Chicago: SPSS Inc., 1990) or Multivariate Analysis by Maurice Tatsuoka (New York: Wiley,
1975).

Also review Numerical Analysis procedures to test for normal densities, bivariate normal
densities, and the assumptions underlying Discriminant Analysis. The students from California
Polytechic State University (San Luis Obispo) submitted the best paper in the world. They
demonstrated exceptional brilliance in correctly choosing Discriminant Analysis as the key to the
solution. They also demonstrated mastery of the mathematics of Discriminant Analysis, the
assumptions underlying the method, and clear explanation of the strengths and weaknesses of
their approach. Remember, this was best in world. Your team wins by competing and most
importantly working together to better understand the pivotal role of Mathematical Modeling in
the 21st century.

Midge Classification

Two species of midges, Af and Apf, have been identified by biologists W.L. Grogan and
W.W. Wirth (1981) on the basis of antenna and wing length. Please refer to the diagram. Each
of nine Af midges is denoted by "e", and each of six Apf midges is denoted by "". It is
important to be able to classify a specimen as Af or Apf, given the antenna and wing length.

1) Given a midge that you know is species Af or Apf, how would you go about classifying it?
2)  Apply your method to three specimens with antenna, wing lengths (1.24, 1.80), (1.28,
1.84), (1.40, 2.04).

3)  Assume that species Af is a valuable pollinator, and species Apfis a carrier of a debilitating

disease. Would you modify yvour classification scheme, and if so, how?
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OPTIMAL CLASSIFICATION AND SEPARATION:
INFERENCES ABOUT A MEAN VECTOR
Scott Guth
Mike Kelleher
Scott Langfeldt
California Polytechnic State University
San Luis Obispo, CA 93407
Advisor: T. O'Neil
SUMMARY

A common problem in numerical taxonomy is to find the optimal separation of populations
and classify individuals into those populations. Often there are few data points, and perhaps
there is even overlap among the different populations. In 1981 W.L. Grogan and W.W. Wirth
identified 15 midges, 6 of type Apfand 9 of type Af. Our goal was to find the best possible
dividing curve between the two types; achieving it required extensive use of multivariate
statistical analysis and some creativity.

There are three essential parts to solving the problem. First, we describe algebraically the
unique features (in terms of antenna and wing length) of the observed midges, to yield a
discriminant that separates the populations. Second, we classify given midges of unknown
species as Apfor Af. Finally, we take into consideration the total probability of misclassification
and revise our discriminant to minimize the expected cost of misclassification,

We present Fisher's method of classification, with variations. We analyze its ability to

separate the populations and classify new midges. In addition, we mention other methods and

discuss why we found them unsuitable.
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We use Fisher's method to classify the given specimen midges. We then adjust the method
for different assumptions, such as the costs of misclassification and different population
proportions. Finally, we assess the likelihood of misallocation.

We compute four lines of separation, based on various assumptions about population
proportions and misclassification costs. Assuming equal population sizes and misclassification

costs, the Fisher method gives the line y = 0.8883 x + 0.6930. Using this line, we classify all

the test specimens as Apf.

I. STATEMENT OF THE PROBLEM

Figure 1 displays the data gathered by Grogan and Wirth,

Figure 1. Display of data collected by Grogan and Wirth
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The problem statement requested that we:

L. Find a procedure for classifying the two species from wing and antenna lengths.
2. Use that procedure to classify three given specimens.
3. Modify our procedure to take into account the assumptions that species Afis a

valuable pollinator, and species Apf is a carrier of a debilitating disease.

ASSUMPTIONS

1. We assume homogeneity of gender of the specimens.

2. We assume that the data are from two different bivariate normal populations.

LS

. Since no direct information is given, we assume reasonably either that both populations
are equal in size, or else that the populations are in the same proportions as the sample:
6/15 Apf, 9/15 Af.

4. We assume that wing length is precisely as good (or bad) an indicator of species as

antenna length.

5. We assume that wing length and antenna length are sufficient to determine the species

of midge.

JUSTIFICATION OF ASSUMPTIONS

1. Sexual homogeneity
Since sex of the individual midge is not part of the data, we must assume either
that there are no differences (which we know to be false) or that only one sex is represented

in the data.
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2. Evaluating bivariate normality

There are various methods to assess bivariate normality. One method is to
transform the data points onto a 4-dimensional sphere; another method simply checks that
the marginals are normal. Opting for a happy medium, we chose a chi-square method,
which examines level curves of the probability surface.

For each species, approximately half of the data point pairs X should lie with the
ellipse (X- 1) 1 (X-p) £ Xo7(0,5), where p is the vector of population
means (wing length, antenna length) and X is the 2 x 2 population covariance matrix.

We used sample values to estimate the parameters for each population of
midges. Since there are so few data points, we calculated the left-hand side at each
point in both samples to see if it lies with the corresponding ellipse. We found that
all points lie with the desired regions [EDITOR'S NOTE: For space reasons, the
tables of values are omitted.] Thus, we do not reject the assumption of bivariate
normality for each population.

3. Population proportions

We must make some assumption about the population proportions. There is no
reason to assume any particular proportion, so we pick two on which to focus attention:

Papr = Par = 172 and Pape = 6/15, Pay = 9/15
4. Wing and antenna as indicarors

We were given no information about the significance of wing length being better

or worse than antenna length, and entomological research gave us no reason to believe that

they are not equal indicators.
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5. Sufficient number of features
We were given data on wing and antenna length only. We therefore must assume

that there are no other data values necessary to determine the species.

4, ANALYSIS OF THE PROBLEM: FISHER'S METHOD

One of our assumptions is that the data for the populations come from bivariate normal
distributions.

The p-dimensional normal probability density function is

(X) = @m) P 2 exp [-(172) (X - p) &' (X - p)]

R. A. Tisher reduced this equation to give a classification function. The idea behind his
function is that the two-dimensional variable X can be transformed into a one-dimensional
variable y by projection onto a real line. The line is chosen such that the projection onto it yields
the widest possible spacing between the y's of one population and the y's of the other. The
distribution of the y's on the line is normal. At the point m equidistant from the univariate
means, a perpendicular is erected, which is our discriminator.

Important in this method are the sample covariance matrices sapr and sar. The four

elements of each matrix are measures of variance in the sample. The entries are:

11 = Z (w1-w)?
i=1
n-1
n
Sy = > (a1 -a)?
i=1 and
n-1
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® ADT ANTENNAE APFYINGS  ® AF ANTEMNNAE AF WINGS

y=-1,1260x

y=0.8883%+0.6830

Figure 2. Projection onto Fisher's perpendicular.

This inequality describes the "ndrthwestem“ half-plane of midges that should be classified as
Aps. The line dividing the two populations has equation v = 0.8883 x + 0.6930 (see Figure 2),

A popular method for evaluating the discriminant, if the distribution of the populations is
unknown (i.e., relying only on sample data), is known as the apparent error rate (APER) and is
quite simple to compute, especially for small sample sizes, APER is simply the proportion of the
specimens that are misclassified by the function. In our case, APER = 1/15. There are better
ways of evaluating the discriminant, but they all involve having fairly large samples. We do not
have this luxury with only 15 data points given.

Determining the likelihood that a point has been misclassified is quite easy. In Figure 3,
we see shaded regions that are the overlap of the two normal curves. In these regions here is a
reasonably high probability of misclassification. At a point in the shaded regions, the ratio of the
two probability density values is equal to the ratio of p(R), the probability of assessing correctly,
to p(W), the probability of assessing incorrectly.

Since p(W) + p(R) = 1, we have:



P(R) = f(x) P(W) = B(x)
f; (X) + fQ(X) f] (X) + fZ(X)

pIR) _ fytx)
T oplW) fx)

fLo f,

Figure 3. Overlap of two normal probability density functions.

However, if one does not assume a cost ratio of 1, the picture looks more like Figure 4.
The adjusted Fisher discriminant no longer splits the curves at the point of equal probability.
The probability of misclassifying an A as an Apt has skyrocketed, while the probability of

misclassifying an Apras an Ay has plummeted.

f2

Figure 4. Overlap of normal probability density functions for non-unit ratio of
misclassification costs.

Actually, Fisher's method for discriminating two populations is a simplification of

another method, the quadratic classification rule:

(1S apr = X287ar) x- 12X (S apr - s Vx -k 2 [(e(1l2) (P2)]
(21} (P1)]

where
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k=1 In (Saprl)+ L (XS apr x1-%25"ar x2)
2 ISar ! 2

If the two covariance matrices are equal, the middle term vanishes and the rule reduces to
Fisher's.

The quadratic classification rule divides the plane with a conic section. For our data,
with equal population proportions and misclassification cost ratio I, we get an ellipse. The given

points fall in the square window of Figure 5, where the ellipse has equation

-15.8829a% + 36.26357aw - 23.26571w? - 37.0697a + 52.00338w - 28.47765 = 0

1.46

- ~ (1.60, 2.10)

.2AS

/ \
P (1.10, 1.60)

Figure 5. The quadratic discriminant.

The Fisher discriminant line deviates from the ellipse segment in the window by less than
1%. Thus, the two sample covariance matrices are close enough to being equal for Fisher's

method to be valid. Computing the ellipses for unequal populations and unequal

misclassification costs can be done easily, but little information is gained, since Fisher's method

works so well,
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5. RESULTS
We classified the three specimen midges and determined the likelihood of our

classification being in error. We were able to make simple adjustments to consider different

population proportions (see Table 1),

Table 1.

Classification of test specimens, with cost ratio 1. The function w is the Fisher
discriminant function that gives the boundary value for wing length
as a function of antenna length.

Equal population sizes Unequal population sizes

P1:P2: 0.5 P] =O.4, P.= 0.6

W(ant) = 0.88830 ant + 0.69300 wi{ant) = 0.88830 ant + 0.71524
Midge
{ant,wing) wiant) _species p(W) wiant)  species _ p(W)
(1.24,1.80) 1.794 Apt 27 1.816 Ay 36
(1,28, 1.84)  1.830 Aps 26 1.852 Ar 34
(1.40.2.04) 1937 Aps 12 1.959 Apr 17

In practice, one would want to set a threshold for the proportion of A,; midges
misclassified as Ar midges. For definiteness, we chose 0.5 for our cost ratio, which is equivalent

to assuming that misclassifying an Aypis twice as bad as misclassifying an Ap. This change in

the cost assumption yields the results of Table 2.
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Table 2,

Classification of test specimens, with cost ratio 0.5,

Equal population sizes Unequal population sizes

Pi=P= 03 Pi=04, P;= 0.6

W(ant) = 0.88830 ant + 0.65497 w(ant) = 0.88830 ant + 0.67721
Midge
{ant,wing) wiant) species p{(W) w(ant}  species p(W)
(1.24,1.80) 1.756 Apr 27 1.779 Apy 64
(1,28, 1.84) 1.792 Ayy 26 1.814 Apr 66
(1.40.2.04) 1.899 Ayt A2 1.921 Apt 17

Of note in Table 2 are two entries in the last column that indicate probability of
misclassification greater than 0.5. These figures suggest that the midges in question should be
classified in the other group. However, the cost ratio changes p(W) and p(R) so that there is no

longer an upper limit of 0.5 on p(W).

6. STRENGTHS AND WEAKNESSES

‘There are several strong points to using Fisher's method:

e It is relatively simple (compared to translating the data points to points on a higher-

dimensional surface);

s It is well known;

¢ It makes no strong assumptions about the two populations, just a minor assumption about
the structure of the covariance matrix;

¢ [t gives a nice, believable result.
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Methods that use training samples have some advantage over Fisher's, in that the data
used to create the classification is not then used to evaluate the classification. Fisher's method, in
using every data point, achieves the highest possible precision.

Another strong aspect of the Fisher method is the malleability of the discriminant
function. This robustness may be hard for the casual observer to appreciate; but to the
mathematician, it is a godsend. The simplicity of the model allowed for keeping the equations
algebraic until we were ready to evaluate them. Also, changing the population proportions and
the cost of a misclassification involved adding only a single term to the discriminant.

Unfortunately, Fisher's method also leaves some weak spots in the model. For example,
it uses a pooled s value, which calls for near-equality in the variances; and it assumes normality.
While one can simulate this normality with transformations, the less normal the probability
distribution function is, the less likely it is that Fisher's method will give a reasonable separation

and classification.

7. ALTERNATIVE SEPARATION MODELS

7.1 Repression line

The first method was a quick and dirty attempt to gain some basic knowledge about the
two samples. Regression lines were calculated for the Ayand the A,r data, and the average of the
two lines was calculated. The idea was to allocate a midge to the population in whose hal{-plane

its measurements fall.

Ar y = 0.825x + 0.637 {I‘adjz = 0.3]}
Apf y = 1.100x + 0.576 {ranz =0.52}
Average y = (.9625x + 0.6075
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We then observed that the Ar midge with antenna and wing lengths of 1.56 and 2.08
respectively was an odd midge, possibly an outlier. We decided to try this method without that
data point, and then calculated the new Ay regression line and average:

As y=0354x+1.28 {ragi® = 0.00}

Average y=0.727x +0.928
The correlation is worse, and we began to doubt this method. After more study, we cast it out as
worthless for this problem.

7.2 Centroid bisector

in the second method, we calculated the centroids (i.e., averages) for each sample. We
then found the perpendicular bisector of the line connecting these points. The centroids of the
Aprand Agsamples are (1.22, 1.93) and (1.41, 1.80). The centroid bisector is y = 1.52576x -
0.14850.

This method had an incredible intuitive feel to it, though it was hard to see why it should
be considered valid. In fact, we soon realized that this method was a beautiful solution to a
problem in which the populations had equal standard deviations and sizes - not the case for our
problem, so we rejected the method.

73 Eauality of squares

In this method we calculated a line such that for each point on the line, the average of the
sums of the squares of the distances to the points in one sample is equal to the same
measurement for the other sample. In equation form:

N M
E; {Ix - x> + [(mx + b) - yil = El {[x - w)? + [(mx + b) - v]2)

N M
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We calculated b by setting x =0 and then calculated m by setting x = 1. The line
computed was y = 1.5272x - 0.2074,

This model [eft the point at (1.24, 1.72) in the wrong population. We again turned our
suspicions on the potential outlier, (1.56, 2.08). We omitied this point and calculated the line
again. We came up with the line y = 1.0745x +0.4297,

For standard deviations that are nearly the same, this is an acceptable model; but for

substantially different variances in the two populations, the model is not suitable,
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